Center for Mitochondrial and Molecular Medicine and Genetics (MAMMAG), University of California, Irvine, California, USA.
JACC Cardiovasc Imaging. 2011 Jan;4(1):1-10. doi: 10.1016/j.jcmg.2010.06.018.
the aim of this study was to test the hypothesis that chronic mitochondrial energy deficiency causes dilated cardiomyopathy, we characterized the hearts of age-matched young and old adenine nucleotide translocator (ANT)1 mutant and control mice.
ANTs export mitochondrial adenosine triphosphate into the cytosol and have a role in the regulation of the intrinsic apoptosis pathway. Mitochondrial energy deficiency has been hypothesized, on the basis of indirect evidence, to be a factor in the pathophysiology of dilated cardiomyopathies. Ant1 inactivation should limit adenosine triphosphate for contraction and calcium transport, thereby resulting in early cardiac dysfunction with later dilation and heart failure.
we conducted a multiyear study of 73 mutant (Ant1-/-) and 57 control (Ant1+/+) mice, between the ages of 2 and 21 months. Hearts were characterized by cardiac anatomy, echocardiographic imaging with velocity vector analysis, histopathology, and apoptosis assays.
the Ant1-/- mice developed a distinctive concentric dilated cardiomyopathy, characterized by substantial myocardial hypertrophy and ventricular dilation, with cardiac function declining earlier in age as compared to control mice. Left ventricular circumferential, radial, and rotational mechanics were reduced even in the younger mutants with preserved systolic function. Histopathologic analysis demonstrated increased myocyte hypertrophy, fibrosis, and calcification in the mutant mice as compared with control mice. Furthermore, increased cytoplasmic cytochrome c levels and caspase 3 activation were observed in the mutant mice.
our results demonstrate that mitochondrial energy deficiency is sufficient to cause dilated cardiomyopathy, confirming that energy defects are a factor in this disease. Energy deficiency initially leads to early mechanical dysfunction before a decline in left ventricular systolic function. Chronic energy deficiency with age then leads to heart failure. Our results now allow us to use the Ant1-/- mouse model for testing new therapies for ANT1 mutant patients.
本研究旨在验证慢性线粒体能量缺陷是否会导致扩张型心肌病这一假说,为此我们对年龄匹配的年轻和老年腺嘌呤核苷酸转位酶(ANT)1 突变体和对照组小鼠的心脏进行了特征描述。
根据间接证据,ANTs 将线粒体三磷酸腺苷(ATP)输出到细胞质中,并且在调节内在凋亡途径方面发挥作用。线粒体能量缺陷已被假设为扩张型心肌病病理生理学的一个因素。ANT1 失活应会限制收缩和钙转运所需的三磷酸腺苷,从而导致早期心脏功能障碍,随后出现扩张和心力衰竭。
我们对 73 只突变(Ant1-/-)和 57 只对照(Ant1+/+)小鼠进行了一项为期多年的研究,这些小鼠的年龄在 2 至 21 个月之间。通过心脏解剖学、速度向量分析的超声心动图成像、组织病理学和细胞凋亡检测对心脏进行了特征描述。
Ant1-/-小鼠发展出一种独特的向心性扩张型心肌病,其特征为心肌肥大和心室扩张显著,与对照组小鼠相比,心脏功能更早地随年龄下降。即使在具有保留收缩功能的年轻突变体中,左心室圆周、径向和旋转力学也会降低。与对照组小鼠相比,突变体小鼠的组织病理学分析显示肌细胞肥大、纤维化和钙化增加。此外,还观察到突变体小鼠细胞质中的细胞色素 c 水平升高和 caspase 3 激活。
我们的研究结果表明,线粒体能量缺陷足以导致扩张型心肌病,证实了能量缺陷是该疾病的一个因素。能量缺陷最初会导致左心室收缩功能下降之前出现早期机械功能障碍。随着年龄的增长,慢性能量不足会导致心力衰竭。我们的研究结果现在使我们能够使用 Ant1-/-小鼠模型来测试针对 ANT1 突变患者的新疗法。