Suppr超能文献

早期康复医疗机构的国际功能、残疾和健康分类核心组合

ICF Core Sets for early post-acute rehabilitation facilities.

机构信息

Institute for Health and Rehabilitation Sciences, Ludwig-Maximilians-Universität München, DE-813 77 Munich, Germany.

出版信息

J Rehabil Med. 2011 Jan;43(2):131-8. doi: 10.2340/16501977-0641.

Abstract

OBJECTIVE

To identify candidate categories for International Classification of Functioning, Disability and Health (ICF) Core Sets for the reporting and measurement of functioning in patients in early post-acute rehabilitation facilities.

DESIGN

Prospective multi-centre cohort study.

PATIENTS

Patients receiving rehabilitation interventions for musculoskeletal, neurological or cardiopulmonary injury or disease in early post-acute rehabilitation facilities.

METHODS

Functioning was coded using the ICF. The criterion for selecting candidate categories for the ICF Core Sets was based on their ability to discriminate between patients with high or low functioning status. Discrimination was assessed using multivariable regression models, the independent variables being all of the ICF categories of the respective comprehensive ICF Core Set. Analogue ratings of overall functioning as reported by patients and health professionals were used as dependent variables.

RESULTS

A total of 165 patients were included in the study (67 neurological, 37 cardiopulmonary, 61 musculoskeletal), mean age 67.5 years, 46.1% female. Selection yielded 38 cate-gories for neurological, 32 for cardiopulmonary, and 31 for musculoskeletal.

CONCLUSION

The present selection of categories can be considered an initial proposal, serving to identify the issues most relevant for the assessment and monitoring of functioning in patients undergoing early post-acute rehabilitation for neurological, cardiopulmonary, and musculoskeletal conditions.

摘要

目的

确定国际功能、残疾和健康分类(ICF)核心组用于报告和测量早期康复设施中患者功能的候选类别。

设计

前瞻性多中心队列研究。

患者

在早期康复设施中接受肌肉骨骼、神经或心肺损伤或疾病康复干预的患者。

方法

使用 ICF 对功能进行编码。选择 ICF 核心组候选类别的标准基于其区分高功能和低功能状态患者的能力。使用多变量回归模型评估区分度,独立变量为各自综合 ICF 核心组的所有 ICF 类别。患者和卫生专业人员报告的整体功能模拟评分被用作因变量。

结果

共有 165 名患者纳入研究(67 名神经科,37 名心肺科,61 名肌肉骨骼科),平均年龄 67.5 岁,46.1%为女性。选择产生了 38 个神经科类别,32 个心肺科类别和 31 个肌肉骨骼科类别。

结论

本研究选择的类别可以被视为初步建议,有助于确定对接受神经、心肺和肌肉骨骼疾病早期康复的患者进行功能评估和监测最相关的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验