Suppr超能文献

理解和预测粘性、弹性、塑性流动。

Understanding and predicting viscous, elastic, plastic flows.

作者信息

Cheddadi I, Saramito P, Dollet B, Raufaste C, Graner F

机构信息

Laboratoire Jean Kuntzmann, UMR 5524 Université J. Fourier-Grenoble I and CNRS, BP 53, F-38041 Grenoble Cedex 09, France.

出版信息

Eur Phys J E Soft Matter. 2011 Jan;34(1):1. doi: 10.1140/epje/i2011-11001-4. Epub 2011 Jan 7.

Abstract

Foams, gels, emulsions, polymer solutions, pastes and even cell assemblies display both liquid and solid mechanical properties. On a local scale, such "soft glassy" systems are disordered assemblies of deformable rearranging units, the complexity of which gives rise to their striking flow behaviour. On a global scale, experiments show that their mechanical behaviour depends on the orientation of their elastic deformation with respect to the flow direction, thus requiring a description by tensorial equations for continuous materials. However, due to their strong non-linearities, the numerous candidate models have not yet been solved in a general multi-dimensional geometry to provide stringent tests of their validity. We compute the first solutions of a continuous model for a discriminant benchmark, namely the flow around an obstacle. We compare it with experiments of a foam flow and find an excellent agreement with the spatial distribution of all important features: we accurately predict the experimental fields of velocity, elastic deformation, and plastic deformation rate in terms of magnitude, direction, and anisotropy. We analyse the role of each parameter, and demonstrate that the yield strain is the main dimensionless parameter required to characterize the materials. We evidence the dominant effect of elasticity, which explains why the stress does not depend simply on the shear rate. Our results demonstrate that the behaviour of soft glassy materials cannot be reduced to an intermediate between that of a solid and that of a liquid: the viscous, the elastic and the plastic contributions to the flow, as well as their couplings, must be treated simultaneously. Our approach opens the way to the realistic multi-dimensional prediction of complex flows encountered in geophysical, industrial and biological applications, and to the understanding of the link between structure and rheology of soft glassy systems.

摘要

泡沫、凝胶、乳液、聚合物溶液、糊剂甚至细胞聚集体都兼具液体和固体的力学性能。在局部尺度上,这类“软玻璃态”系统是由可变形重排单元组成的无序聚集体,其复杂性导致了它们引人注目的流动行为。在整体尺度上,实验表明它们的力学行为取决于弹性变形相对于流动方向的取向,因此需要用连续材料的张量方程来描述。然而,由于其强烈的非线性,众多候选模型尚未在一般的多维几何中得到求解,以对其有效性进行严格测试。我们计算了一个判别基准连续模型的首批解,即绕障碍物的流动。我们将其与泡沫流动实验进行比较,发现与所有重要特征的空间分布都有很好的一致性:我们在大小、方向和各向异性方面准确预测了速度、弹性变形和塑性变形率的实验场。我们分析了每个参数的作用,并证明屈服应变是表征材料所需主要的无量纲参数。我们证明了弹性的主导作用,这解释了为什么应力不仅仅取决于剪切速率。我们的结果表明,软玻璃态材料的行为不能简化为固体和液体行为之间的中间状态:流动中的粘性、弹性和塑性贡献及其耦合必须同时处理。我们的方法为地球物理、工业和生物应用中遇到的复杂流动的实际多维预测以及理解软玻璃态系统的结构与流变学之间的联系开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验