Bandeira de Melo Elton B, Araújo Aluízio F R
Federal University of Pernambuco, Center of Informatics, Av. Professor Luís Freire s/n, Cidade Universitária, Recife, Pernambuco, Brazil.
Biosystems. 2011 Apr;104(1):23-31. doi: 10.1016/j.biosystems.2010.12.006. Epub 2011 Jan 12.
In social insects, the superposition of simple individual behavioral rules leads to the emergence of complex collective patterns and helps solve difficult problems inherent to surviving in hostile habitats. Modelling ant colony foraging reveals strategies arising from the insects' self-organization and helps develop of new computational strategies in order to solve complex problems. This paper presents advances in modelling ants' behavior when foraging in a confined and dynamic environment, based on experiments with the Argentine ant Linepithema humile in a relatively complex artificial network. We propose a model which overcomes the problem of stagnation observed in earlier models by taking into account additional biological aspects, by using non-linear functions for the deposit, perception and evaporation of pheromone, and by introducing new mechanisms to represent randomness and the exploratory behavior of the ants.
在社会性昆虫中,简单个体行为规则的叠加导致了复杂集体模式的出现,并有助于解决在恶劣栖息地生存所固有的难题。对蚁群觅食进行建模揭示了昆虫自组织产生的策略,并有助于开发新的计算策略以解决复杂问题。本文基于在相对复杂的人工网络中对阿根廷蚁Linepithema humile进行的实验,介绍了在受限动态环境中对蚂蚁觅食行为进行建模的进展。我们提出了一个模型,该模型通过考虑额外的生物学因素、使用用于信息素沉积、感知和蒸发的非线性函数以及引入表示随机性和蚂蚁探索行为的新机制,克服了早期模型中观察到的停滞问题。