Suppr超能文献

脂质诱导胰岛素抵抗的机制:激活的蛋白激酶Cε是关键调节因子。

Mechanism of lipid induced insulin resistance: activated PKCε is a key regulator.

作者信息

Dasgupta Suman, Bhattacharya Sushmita, Maitra Sudipta, Pal Durba, Majumdar Subeer S, Datta Asis, Bhattacharya Samir

机构信息

Cellular and Molecular Endocrinology Laboratory, Department of Zoology, School of Life Science, Visva-Bharati University, Santiniketan 731235, India.

出版信息

Biochim Biophys Acta. 2011 Apr;1812(4):495-506. doi: 10.1016/j.bbadis.2011.01.001. Epub 2011 Jan 12.

Abstract

Fatty acids (FAs) are known to impair insulin signaling in target cells. Accumulating evidences suggest that one of the major sites of FAs adverse effect is insulin receptor (IR). However, the underlying mechanism is yet unclear. An important clue was indicated in leptin receptor deficient (db/db) diabetic mice where increased circulatory FAs was coincided with phosphorylated PKCε and reduced IR expression. We report here that central to this mechanism is the phosphorylation of PKCε by FAs. Kinase dead mutant of PKCε did not augment FA induced IRβ downregulation indicating phosphorylation of PKCε is crucial for FA induced IRβ reduction. Investigation with insulin target cells showed that kinase independent phosphorylation of PKCε by FA occurred through palmitoylation. Mutation at cysteine 276 and 474 residues in PKCε suppressed this process indicating participation of these two residues in palmitoylation. Phosphorylation of PKCε endowed it the ability to migrate to the nuclear region of insulin target cells. It was intriguing to search about how translocation of phosphorylated PKCε occurred without having canonical nuclear localization signal (NLS). We found that F-actin recognized phospho-form of PKCε and chaperoned it to the nuclear region where it interact with HMGA1 and Sp1, the transcription regulator of IR and HMGA1 gene respectively and impaired HMGA1 function. This resulted in the attenuation of HMGA1 driven IR transcription that compromised insulin signaling and sensitivity.

摘要

已知脂肪酸(FAs)会损害靶细胞中的胰岛素信号传导。越来越多的证据表明,脂肪酸产生不利影响的主要部位之一是胰岛素受体(IR)。然而,其潜在机制尚不清楚。在瘦素受体缺陷(db/db)糖尿病小鼠中发现了一个重要线索,即循环脂肪酸增加与蛋白激酶Cε(PKCε)磷酸化及胰岛素受体表达降低同时出现。我们在此报告,该机制的核心是脂肪酸对PKCε的磷酸化作用。PKCε的激酶失活突变体不会增强脂肪酸诱导的胰岛素受体β(IRβ)下调,这表明PKCε的磷酸化对于脂肪酸诱导的IRβ减少至关重要。对胰岛素靶细胞的研究表明,脂肪酸对PKCε的激酶非依赖性磷酸化是通过棕榈酰化发生的。PKCε中半胱氨酸276和474残基的突变抑制了这一过程,表明这两个残基参与了棕榈酰化。PKCε的磷酸化使其能够迁移到胰岛素靶细胞的核区域。有趣的是,要探究磷酸化的PKCε在没有典型核定位信号(NLS)的情况下是如何发生易位的。我们发现,丝状肌动蛋白(F-actin)识别PKCε的磷酸化形式,并将其护送至核区域,在那里它分别与IR和HMGA1基因的转录调节因子HMGA1和Sp1相互作用,并损害HMGA1的功能。这导致HMGA1驱动的IR转录减弱,从而损害胰岛素信号传导和敏感性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验