Petersen Max C, Madiraju Anila K, Gassaway Brandon M, Marcel Michael, Nasiri Ali R, Butrico Gina, Marcucci Melissa J, Zhang Dongyan, Abulizi Abudukadier, Zhang Xian-Man, Philbrick William, Hubbard Stevan R, Jurczak Michael J, Samuel Varman T, Rinehart Jesse, Shulman Gerald I
J Clin Invest. 2016 Nov 1;126(11):4361-4371. doi: 10.1172/JCI86013. Epub 2016 Oct 17.
Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D), but whether NAFLD plays a causal role in the pathogenesis of T2D is uncertain. One proposed mechanism linking NAFLD to hepatic insulin resistance involves diacylglycerol-mediated (DAG-mediated) activation of protein kinase C-ε (PKCε) and the consequent inhibition of insulin receptor (INSR) kinase activity. However, the molecular mechanism underlying PKCε inhibition of INSR kinase activity is unknown. Here, we used mass spectrometry to identify the phosphorylation site Thr1160 as a PKCε substrate in the functionally critical INSR kinase activation loop. We hypothesized that Thr1160 phosphorylation impairs INSR kinase activity by destabilizing the active configuration of the INSR kinase, and our results confirmed this prediction by demonstrating severely impaired INSR kinase activity in phosphomimetic T1160E mutants. Conversely, the INSR T1160A mutant was not inhibited by PKCε in vitro. Furthermore, mice with a threonine-to-alanine mutation at the homologous residue Thr1150 (InsrT1150A mice) were protected from high fat diet-induced hepatic insulin resistance. InsrT1150A mice also displayed increased insulin signaling, suppression of hepatic glucose production, and increased hepatic glycogen synthesis compared with WT controls during hyperinsulinemic clamp studies. These data reveal a critical pathophysiological role for INSR Thr1160 phosphorylation and provide further mechanistic links between PKCε and INSR in mediating NAFLD-induced hepatic insulin resistance.
非酒精性脂肪性肝病(NAFLD)是2型糖尿病(T2D)的一个危险因素,但NAFLD在T2D发病机制中是否起因果作用尚不确定。一种将NAFLD与肝脏胰岛素抵抗联系起来的机制涉及二酰甘油介导的(DAG介导的)蛋白激酶C-ε(PKCε)激活以及随后胰岛素受体(INSR)激酶活性的抑制。然而,PKCε抑制INSR激酶活性的分子机制尚不清楚。在这里,我们使用质谱法将磷酸化位点Thr1160鉴定为功能关键的INSR激酶激活环中PKCε的底物。我们假设Thr1160磷酸化通过破坏INSR激酶的活性构型来损害INSR激酶活性,我们的结果通过证明模拟磷酸化的T1160E突变体中INSR激酶活性严重受损证实了这一预测。相反,INSR T1160A突变体在体外不受PKCε抑制。此外,在同源残基Thr1150处具有苏氨酸到丙氨酸突变的小鼠(InsrT1150A小鼠)免受高脂饮食诱导的肝脏胰岛素抵抗。在高胰岛素钳夹研究期间,与野生型对照相比,InsrT1150A小鼠还表现出胰岛素信号增强抑制肝葡萄糖生成以及肝糖原合成增加。这些数据揭示了INSR Thr1160磷酸化的关键病理生理作用,并在介导NAFLD诱导的肝脏胰岛素抵抗方面提供了PKCε与INSR之间进一步的机制联系。