Biosciences Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, USA.
J Chem Phys. 2011 Jan 14;134(2):024111. doi: 10.1063/1.3516517.
Recently discovered identities in statistical mechanics have enabled the calculation of equilibrium ensemble averages from realizations of driven nonequilibrium processes, including single-molecule pulling experiments and analogous computer simulations. Challenges in collecting large data sets motivate the pursuit of efficient statistical estimators that maximize use of available information. Along these lines, Hummer and Szabo developed an estimator that combines data from multiple time slices along a driven nonequilibrium process to compute the potential of mean force. Here, we generalize their approach, pooling information from multiple time slices to estimate arbitrary equilibrium expectations. Our expression may be combined with estimators of path-ensemble averages, including existing optimal estimators that use data collected by unidirectional and bidirectional protocols. We demonstrate the estimator by calculating free energies, moments of the polymer extension, the thermodynamic metric tensor, and the thermodynamic length in a model single-molecule pulling experiment. Compared to estimators that only use individual time slices, our multiple time-slice estimators yield substantially smoother estimates and achieve lower variance for higher-order moments.
最近在统计力学中发现的身份使我们能够从驱动的非平衡过程的实现中计算平衡系综平均值,包括单分子拉伸实验和类似的计算机模拟。收集大数据集的挑战促使人们寻求有效的统计估计量,以最大限度地利用可用信息。沿着这些思路,Hummer 和 Szabo 开发了一种估计量,它结合了沿驱动的非平衡过程的多个时间片的数据,以计算平均力势。在这里,我们推广了他们的方法,从多个时间片汇集信息来估计任意平衡期望。我们的表达式可以与路径系综平均值的估计量结合使用,包括使用单向和双向协议收集数据的现有最佳估计量。我们通过在模型单分子拉伸实验中计算自由能、聚合物延伸的矩、热力学度量张量和热力学长度来演示该估计量。与仅使用单个时间片的估计量相比,我们的多个时间片估计量产生了更平滑的估计值,并实现了更高阶矩的更低方差。