Computational and Systems Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.
Graduate Program in Physiology, Biophysics, and Systems Biology , Weill Cornell Medical College , New York , New York 10065 , United States.
J Phys Chem B. 2018 May 31;122(21):5466-5486. doi: 10.1021/acs.jpcb.7b11734.
Biomolecular simulations are typically performed in an aqueous environment where the number of ions remains fixed for the duration of the simulation, generally with either a minimally neutralizing ion environment or a number of salt pairs intended to match the macroscopic salt concentration. In contrast, real biomolecules experience local ion environments where the salt concentration is dynamic and may differ from bulk. The degree of salt concentration variability and average deviation from the macroscopic concentration remains, as yet, unknown. Here, we describe the theory and implementation of a Monte Carlo osmostat that can be added to explicit solvent molecular dynamics or Monte Carlo simulations to sample from a semigrand canonical ensemble in which the number of salt pairs fluctuates dynamically during the simulation. The osmostat reproduces the correct equilibrium statistics for a simulation volume that can exchange ions with a large reservoir at a defined macroscopic salt concentration. To achieve useful Monte Carlo acceptance rates, the method makes use of nonequilibrium candidate Monte Carlo (NCMC) moves in which monovalent ions and water molecules are alchemically transmuted using short nonequilibrium trajectories, with a modified Metropolis-Hastings criterion ensuring correct equilibrium statistics for an ( Δμ, N, p, T) ensemble to achieve a ∼10× boost in acceptance rates. We demonstrate how typical protein (DHFR and the tyrosine kinase Src) and nucleic acid (Drew-Dickerson B-DNA dodecamer) systems exhibit salt concentration distributions that significantly differ from fixed-salt bulk simulations and display fluctuations that are on the same order of magnitude as the average.
生物分子模拟通常在水相环境中进行,其中离子数量在模拟过程中保持固定,通常采用最小中和离子环境或一定数量的盐对来匹配宏观盐浓度。相比之下,实际的生物分子会经历局部离子环境,其中盐浓度是动态的,可能与体相不同。盐浓度变化的程度和与宏观浓度的平均偏差仍然未知。在这里,我们描述了一种蒙特卡罗渗透压计的理论和实现方法,该渗透压计可以添加到显式溶剂分子动力学或蒙特卡罗模拟中,以从半广延正则系综中进行采样,其中盐对的数量在模拟过程中动态波动。渗透压计可以为能够与定义的宏观盐浓度的大储库交换离子的模拟体积再现正确的平衡统计数据。为了实现有用的蒙特卡罗接受率,该方法利用非平衡候选蒙特卡罗(NCMC)移动,其中单价离子和水分子使用短的非平衡轨迹进行化学转化,使用改进的 Metropolis-Hastings 准则确保(Δμ,N,p,T)系综的正确平衡统计数据,从而使接受率提高约 10 倍。我们展示了典型的蛋白质(DHFR 和酪氨酸激酶 Src)和核酸(Drew-Dickerson B-DNA 十二聚体)系统如何表现出与固定盐体相模拟显著不同的盐浓度分布,并显示出与平均水平相当的波动。