Laboratoire de Pharmacologie Chimique et Génétique et d'Imagerie, UMR 8151 CNRS, U 1022 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France.
J Control Release. 2011 Apr 10;151(1):57-64. doi: 10.1016/j.jconrel.2011.01.007. Epub 2011 Jan 15.
Poloxamers are triblock copolymers made of poly(ethylene glycol)-(poly(propylene glycol))-poly(ethylene glycol). They have been shown to enhance gene transfer in the muscle, and co-administration of polymers and DNA appeared to be crucial to obtain this effect. It is questionable then if some interaction occurs between polymers and DNA. Polymer interaction with membranes represents a second crucial point due to the central hydrophobic part of the triblock copolymers. Besides, the question of the polymer spanning or adsorbing to the surface has not been solved by now. We addressed these issues by means of sensitive techniques that allowed working in diluted conditions and gaining in comprehension of gene transfection. By means of simultaneous time-correlated single-photon counting and fluorescence correlation spectroscopy, we have shown that the diffusion time of a single DNA molecule and PicoGreen lifetime was not altered in the presence of the triblock copolymer L64. Polypropylene (glycol) interactions with dodecylphosphocholine micelles were shown to occur at a deep level by (1)H NMR using doxyl probes located at the head or the lipid extremity of the micelles. The polypropylene (glycol) also interacted with lipid bilayers in a manner dependent on the cholesterol content, as shown by differential scanning calorimetry using liposomes. This interaction destabilised the membrane and allowed the release of small molecules. Finally, molecular dynamic simulation of the copolymer L64 in the presence of dodecylphosphocholine showed that the hydrophobic core of the polymer formed an extremely tight cluster, whose dimensions excluded the possibility of polymer spanning across the lipidic micelles. The simulation positively correlated with the destabilising effect observed on the liposomal membrane models.
泊洛沙姆是由聚(乙二醇)-聚(丙二醇)-聚(乙二醇)组成的三嵌段共聚物。它们已被证明能增强肌肉中的基因转移,而聚合物和 DNA 的共同给药似乎是获得这种效果的关键。那么,聚合物和 DNA 之间是否存在一些相互作用就成了一个问题。由于三嵌段共聚物的中心疏水区,聚合物与膜的相互作用是第二个关键问题。此外,聚合物跨越或吸附到表面的问题至今仍未解决。我们通过一些敏感的技术来解决这些问题,这些技术允许在稀释的条件下工作,并提高对基因转染的理解。通过同时进行时间相关的单光子计数和荧光相关光谱学,我们表明,在三嵌段共聚物 L64 的存在下,单个 DNA 分子的扩散时间和 PicoGreen 寿命没有改变。使用位于胶束头部或脂质末端的 doxyl 探针,通过(1)H NMR 表明,聚丙二醇与十二烷基磷酸胆碱胶束的相互作用发生在很深的层次。聚丙二醇(二醇)还以胆固醇含量依赖的方式与脂质双层相互作用,这可以通过使用脂质体的差示扫描量热法来证明。这种相互作用使膜不稳定,并允许小分子释放。最后,在存在十二烷基磷酸胆碱的情况下对共聚物 L64 进行分子动力学模拟表明,聚合物的疏水区形成了一个极其紧密的簇,其尺寸排除了聚合物跨越脂质胶束的可能性。模拟与在脂质体膜模型上观察到的去稳定化效果呈正相关。