Fyrberg E, Fyrberg C C, Beall C, Saville D L
Department of Biology, Johns Hopkins University, Baltimore, MD 21218.
J Mol Biol. 1990 Dec 5;216(3):657-75. doi: 10.1016/0022-2836(90)90390-8.
In vertebrates troponin complexes interact co-operatively with tropomyosin dimers to modulate skeletal muscle contraction. In order further to investigate troponin assembly and function in vivo, we are developing molecular genetic approaches. Here we report characterization of the gene that encodes Drosophila tropinin-T and analyses of muscle defects engendered by several mutant alleles. We found that the Drosophila troponin-T locus specifies at least three proteins having sequences similar to vertebrate troponin-T. All are significantly larger than any avian or mammalian isoforms, however, due to a highly acidic carboxy-terminal extension. Comparisons of the chromosomal arrangements of vertebrate and Drosophila troponin-T genes revealed that the location of one intron-exon boundary is conserved. This observation and the similarity of vertebrate and Drosophila troponin-T primary sequences suggest that the respective proteins are homologous, and that troponin-T pre-dates the divergence of vertebrate and invertebrate organisms. In situ hybridization of the Drosophila troponin-T gene to polytene chromosomes demonstrated that it resides within subdivision 12A of the X chromosome, precisely where upheld and indented thorax flight muscle mutations have been mapped previously. We determined the nucleotide sequences of troponin-T genes in five extant mutants. All have deleterious alterations, directly establishing that upheld and indented thorax muscle abnormalities are due to defective troponin-T. Two of the alleles, upheld2 and upheld3, apparently disrupt RNA splicing and eliminate most or all troponin-T from flight and jump muscles, while the remaining three alleles change the identities of single amino acids of troponin-T. Electron microscopy of mutant muscles revealed that the two null alleles eliminate thin filaments, except where they are bound by electron-dense material presumed to be Z-disc proteins. Two of the point mutations, upheld101 and indented thorax3, do not perturb assembly of myofibrils, but cause their degeneration within days after muscles begin to be utilized. The final mutation, upheldwhu, reduces the diameter of the myofibril lattice by approximately one-half. We propose hypotheses to explain how each troponin-T mutation engenders the observed myofibrillar defects.
在脊椎动物中,肌钙蛋白复合物与原肌球蛋白二聚体协同相互作用,以调节骨骼肌收缩。为了进一步研究肌钙蛋白在体内的组装和功能,我们正在开发分子遗传学方法。在此,我们报告了编码果蝇肌钙蛋白-T的基因的特征,以及对几个突变等位基因引起的肌肉缺陷的分析。我们发现果蝇肌钙蛋白-T基因座指定了至少三种与脊椎动物肌钙蛋白-T序列相似的蛋白质。然而,由于高度酸性的羧基末端延伸,所有这些蛋白质都明显大于任何鸟类或哺乳动物的同工型。脊椎动物和果蝇肌钙蛋白-T基因的染色体排列比较表明,一个内含子-外显子边界的位置是保守的。这一观察结果以及脊椎动物和果蝇肌钙蛋白-T一级序列的相似性表明,各自的蛋白质是同源的,并且肌钙蛋白-T在脊椎动物和无脊椎动物分化之前就已存在。果蝇肌钙蛋白-T基因与多线染色体的原位杂交表明,它位于X染色体的12A分区内,正是先前已定位到维持和凹陷胸肌飞行肌突变的位置。我们确定了五个现存突变体中肌钙蛋白-T基因的核苷酸序列。所有这些都有有害的改变,直接证明维持和凹陷胸肌异常是由于肌钙蛋白-T缺陷所致。其中两个等位基因,维持2和维持3,显然破坏了RNA剪接,并从飞行和跳跃肌肉中消除了大部分或所有肌钙蛋白-T,而其余三个等位基因改变了肌钙蛋白-T单个氨基酸的身份。突变肌肉的电子显微镜检查显示,这两个无效等位基因消除了细肌丝,除了它们被假定为Z盘蛋白的电子致密物质结合的地方。两个点突变,维持101和凹陷胸3,不会干扰肌原纤维的组装,但会在肌肉开始使用后的几天内导致其退化。最后一个突变,维持whu,使肌原纤维晶格的直径减小了约一半。我们提出假设来解释每个肌钙蛋白-T突变如何导致观察到的肌原纤维缺陷。