Suppr超能文献

肌动蛋白K326和K328的假乙酰化破坏了黑腹果蝇间接飞行肌的结构和性能。

Pseudo-acetylation of K326 and K328 of actin disrupts Drosophila melanogaster indirect flight muscle structure and performance.

作者信息

Viswanathan Meera C, Blice-Baum Anna C, Schmidt William, Foster D Brian, Cammarato Anthony

机构信息

Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA.

出版信息

Front Physiol. 2015 Apr 28;6:116. doi: 10.3389/fphys.2015.00116. eCollection 2015.

Abstract

In striated muscle tropomyosin (Tm) extends along the length of F-actin-containing thin filaments. Its location governs access of myosin binding sites on actin and, hence, force production. Intermolecular electrostatic associations are believed to mediate critical interactions between the proteins. For example, actin residues K326, K328, and R147 were predicted to establish contacts with E181 of Tm. Moreover, K328 also potentially forms direct interactions with E286 of myosin when the motor is strongly bound. Recently, LC-MS/MS analysis of the cardiac acetyl-lysine proteome revealed K326 and K328 of actin were acetylated, a post-translational modification (PTM) that masks the residues' inherent positive charges. Here, we tested the hypothesis that by removing the vital actin charges at residues 326 and 328, the PTM would perturb Tm positioning and/or strong myosin binding as manifested by altered skeletal muscle function and structure in the Drosophila melanogaster model system. Transgenic flies were created that permit tissue-specific expression of K326Q, K328Q, or K326Q/K328Q acetyl-mimetic actin and of wild-type actin via the UAS-GAL4 bipartite expression system. Compared to wild-type actin, muscle-restricted expression of mutant actin had a dose-dependent effect on flight ability. Moreover, excessive K328Q and K326Q/K328Q actin overexpression induced indirect flight muscle degeneration, a phenotype consistent with hypercontraction observed in other Drosophila myofibrillar mutants. Based on F-actin-Tm and F-actin-Tm-myosin models and on our physiological data, we conclude that acetylating K326 and K328 of actin alters electrostatic associations with Tm and/or myosin and thereby augments contractile properties. Our findings highlight the utility of Drosophila as a model that permits efficient targeted design and assessment of molecular and tissue-specific responses to muscle protein modifications, in vivo.

摘要

在横纹肌中,原肌球蛋白(Tm)沿着含F-肌动蛋白的细肌丝长度延伸。其位置决定肌动蛋白上肌球蛋白结合位点的可及性,进而决定力的产生。分子间静电缔合被认为介导了蛋白质之间的关键相互作用。例如,预测肌动蛋白残基K326、K328和R147会与Tm的E181建立联系。此外,当肌球蛋白紧密结合时,K328还可能与肌球蛋白的E286形成直接相互作用。最近,对心脏乙酰赖氨酸蛋白质组的液相色谱-串联质谱分析显示,肌动蛋白的K326和K328被乙酰化,这是一种翻译后修饰(PTM),掩盖了这些残基固有的正电荷。在这里,我们测试了这样一个假设:通过去除残基326和328处至关重要的肌动蛋白电荷,这种翻译后修饰会扰乱Tm的定位和/或肌球蛋白的紧密结合,这在果蝇模型系统中表现为骨骼肌功能和结构的改变。通过UAS-GAL4二元表达系统创建了转基因果蝇,使其能够组织特异性表达K326Q、K328Q或K326Q/K328Q乙酰模拟肌动蛋白以及野生型肌动蛋白。与野生型肌动蛋白相比,突变型肌动蛋白在肌肉中的限制性表达对飞行能力有剂量依赖性影响。此外,过量的K328Q和K326Q/K328Q肌动蛋白过表达会导致间接飞行肌退化,这一表型与在其他果蝇肌原纤维突变体中观察到的过度收缩一致。基于F-肌动蛋白-Tm和F-肌动蛋白-Tm-肌球蛋白模型以及我们的生理学数据,我们得出结论,肌动蛋白的K326和K328乙酰化会改变与Tm和/或肌球蛋白的静电缔合,从而增强收缩特性。我们的研究结果突出了果蝇作为一种模型的实用性,它能够在体内对肌肉蛋白质修饰进行高效的靶向设计和分子及组织特异性反应评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4355/4412121/397d2c299b97/fphys-06-00116-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验