Suppr超能文献

单羧酸转运蛋白亚型 4 和 1 的催化机制的动力学分析和实验设计。

Kinetic analysis and design of experiments to identify the catalytic mechanism of the monocarboxylate transporter isoforms 4 and 1.

机构信息

Biotechnology and Bioengineering Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, USA.

出版信息

Biophys J. 2011 Jan 19;100(2):369-80. doi: 10.1016/j.bpj.2010.11.079.

Abstract

Transport of lactate, pyruvate, and other monocarboxylates across the sarcolemma of skeletal and cardiac myocytes occurs via passive diffusion and by monocarboxylate transporter (MCT) mediated transport. The flux of lactate and protons through the MCT plays an important role in muscle energy metabolism during rest and exercise and in pH regulation during exercise. The MCT isoforms 1 and 4 are the major isoforms of this transporter in skeletal and cardiac muscle. The current consensus on the mechanism of these transporters, based on experimental measurements of labeled lactate fluxes, is that monocarboxylate-proton symport occurs via a rapid-equilibrium ordered mechanism with proton binding followed by monocarboxylate binding. This study tests ordered and random mechanisms by fitting experimental measurements of tracer exchange fluxes from MCT1 and MCT4 isoforms to theoretical predictions derived using relationships between one-way fluxes and thermodynamic forces. Analysis shows that: 1), the available kinetic data are insufficient to distinguish between a rapid-equilibrium ordered and a rapid-equilibrium random-binding model for MCT4; 2), MCT1 has a higher affinity to lactate than does MCT4; 3), the theoretical conditions for the so-called trans-acceleration phenomenon (e.g., increased tracer efflux from a vesicle caused by increased substrate concentration outside the vesicle) do not necessarily require the rate constant for the lactate and proton bound transporter to reorient across the membrane to be higher than that for the unbound transporter; and finally, 4), based on model analysis, additional experiments are proposed to be able to distinguish between ordered and random-binding mechanisms.

摘要

乳酸盐、丙酮酸和其他单羧酸跨骨骼肌和心肌细胞膜的转运通过被动扩散和单羧酸转运蛋白(MCT)介导的转运进行。MCT 转运的乳酸盐和质子通量在休息和运动期间的肌肉能量代谢以及运动期间的 pH 调节中发挥重要作用。MCT 同工型 1 和 4 是骨骼肌和心肌中这种转运体的主要同工型。基于对标记的乳酸盐通量的实验测量,目前对这些转运体的机制的共识是,单羧酸-质子协同转运通过快速平衡有序机制发生,质子结合后再结合单羧酸。本研究通过将 MCT1 和 MCT4 同工型的示踪剂交换通量的实验测量拟合到使用单向通量和热力学力之间的关系推导出的理论预测,来检验有序和随机机制。分析表明:1),可用的动力学数据不足以区分 MCT4 的快速平衡有序和快速平衡随机结合模型;2),MCT1 对乳酸盐的亲和力高于 MCT4;3),所谓的反协同加速现象(例如,由于囊泡外底物浓度增加而导致示踪剂从囊泡中更快流出)的理论条件不一定需要与结合的转运蛋白重新定向穿过膜的乳酸盐和质子的速率常数高于未结合的转运蛋白;最后,4),基于模型分析,提出了额外的实验来区分有序和随机结合机制。

相似文献

3
Effects of acute and chronic exercise on sarcolemmal MCT1 and MCT4 contents in human skeletal muscles: current status.
Am J Physiol Regul Integr Comp Physiol. 2012 Jan 1;302(1):R1-14. doi: 10.1152/ajpregu.00250.2011. Epub 2011 Oct 19.
4
Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle.
J Physiol. 2000 Dec 1;529 Pt 2(Pt 2):285-93. doi: 10.1111/j.1469-7793.2000.00285.x.
5
Involvement of SLC16A1/MCT1 and SLC16A3/MCT4 in l-lactate transport in the hepatocellular carcinoma cell line.
Biopharm Drug Dispos. 2022 Oct;43(5):183-191. doi: 10.1002/bdd.2329. Epub 2022 Sep 22.
6
Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle.
J Physiol. 2006 Nov 15;577(Pt 1):433-43. doi: 10.1113/jphysiol.2006.115436. Epub 2006 Sep 7.
7
Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments.
J Biol Chem. 2019 Dec 27;294(52):20135-20147. doi: 10.1074/jbc.RA119.009093. Epub 2019 Nov 12.
8
Crucial residue involved in L-lactate recognition by human monocarboxylate transporter 4 (hMCT4).
PLoS One. 2013 Jul 31;8(7):e67690. doi: 10.1371/journal.pone.0067690. Print 2013.
10
Current aspects of lactate exchange: lactate/H+ transport in human skeletal muscle.
Eur J Appl Physiol. 2001 Nov;86(1):12-6. doi: 10.1007/s004210100517.

引用本文的文献

1
Ischemia-Selective Cardioprotection by Malonate for Ischemia/Reperfusion Injury.
Circ Res. 2022 Sep 2;131(6):528-541. doi: 10.1161/CIRCRESAHA.121.320717. Epub 2022 Aug 12.
2
An overview of MCT1 and MCT4 in GBM: small molecule transporters with large implications.
Am J Cancer Res. 2018 Oct 1;8(10):1967-1976. eCollection 2018.
3
Determination of the catalytic mechanism for mitochondrial malate dehydrogenase.
Biophys J. 2015 Jan 20;108(2):408-19. doi: 10.1016/j.bpj.2014.11.3467.
4
Theoretical predictions of lactate and hydrogen ion distributions in tumours.
PLoS One. 2013 Aug 21;8(8):e72020. doi: 10.1371/journal.pone.0072020. eCollection 2013.
5
Regulation of ion gradients across myocardial ischemic border zones: a biophysical modelling analysis.
PLoS One. 2013;8(4):e60323. doi: 10.1371/journal.pone.0060323. Epub 2013 Apr 5.
6
A biophysical model of the mitochondrial ATP-Mg/P(i) carrier.
Biophys J. 2012 Oct 3;103(7):1616-25. doi: 10.1016/j.bpj.2012.08.050. Epub 2012 Oct 2.
7
Bicarbonate, NBCe1, NHE, and carbonic anhydrase activity enhance lactate-H+ transport in bovine corneal endothelium.
Invest Ophthalmol Vis Sci. 2011 Oct 17;52(11):8086-93. doi: 10.1167/iovs.11-8086.
8
Simulation of cellular biochemical system kinetics.
Wiley Interdiscip Rev Syst Biol Med. 2011 Mar-Apr;3(2):136-46. doi: 10.1002/wsbm.116. Epub 2010 Dec 17.

本文引用的文献

1
Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments.
Biotechnol Bioeng. 1997 Jul 5;55(1):101-17. doi: 10.1002/(SICI)1097-0290(19970705)55:1<101::AID-BIT12>3.0.CO;2-P.
2
Relationship between thermodynamic driving force and one-way fluxes in reversible processes.
PLoS One. 2007 Jan 3;2(1):e144. doi: 10.1371/journal.pone.0000144.
3
The expression of lactate transporters (MCT1 and MCT4) in heart and muscle.
Eur J Appl Physiol. 2001 Nov;86(1):6-11. doi: 10.1007/s004210100516.
4
Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle.
J Physiol. 2000 Dec 1;529 Pt 2(Pt 2):285-93. doi: 10.1111/j.1469-7793.2000.00285.x.
6
Abundance and subcellular distribution of MCT1 and MCT4 in heart and fast-twitch skeletal muscles.
Am J Physiol Endocrinol Metab. 2000 Jun;278(6):E1067-77. doi: 10.1152/ajpendo.2000.278.6.E1067.
8
Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter.
J Physiol. 1999 Jun 15;517 ( Pt 3)(Pt 3):633-42. doi: 10.1111/j.1469-7793.1999.0633s.x.
10
Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3.
J Biol Chem. 1998 Jun 26;273(26):15920-6. doi: 10.1074/jbc.273.26.15920.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验