Suppr超能文献

线粒体苹果酸脱氢酶催化机制的测定。

Determination of the catalytic mechanism for mitochondrial malate dehydrogenase.

作者信息

Dasika Santosh K, Vinnakota Kalyan C, Beard Daniel A

机构信息

Department of Molecular and Integrated Physiology, University of Michigan, Ann Arbor, Michigan.

Department of Molecular and Integrated Physiology, University of Michigan, Ann Arbor, Michigan.

出版信息

Biophys J. 2015 Jan 20;108(2):408-19. doi: 10.1016/j.bpj.2014.11.3467.

Abstract

The kinetics of malate dehydrogenase (MDH) catalyzed oxidation/reduction of L-malate/oxaloacetate is pH-dependent due to the proton generated/taken up during the reaction. Previous kinetic studies on the mitochondrial MDH did not yield a consensus kinetic model that explains both substrate and pH dependency of the initial velocity. In this study, we propose, to our knowledge, a new kinetic mechanism to explain kinetic data acquired over a range of pH and substrate concentrations. Progress curves in the forward and reverse reaction directions were obtained under a variety of reactant concentrations to identify associated kinetic parameters. Experiments were conducted at physiologically relevant ionic strength of 0.17 M, pH ranging between 6.5 and 9.0, and at 25 °C. The developed model was built on the prior observation of proton uptake upon binding of NADH to MDH, and that the MDH-catalyzed oxidation of NADH may follow an ordered bi-bi mechanism with NADH/NAD binding to the enzyme first, followed by the binding of oxaloacetate/L-malate. This basic mechanism was expanded to account for additional ionic states to explain the pH dependency of the kinetic behavior, resulting in what we believe to be the first kinetic model explaining both substrate and pH dependency of the reaction velocity.

摘要

由于反应过程中产生或消耗质子,苹果酸脱氢酶(MDH)催化L-苹果酸/草酰乙酸氧化/还原的动力学取决于pH值。先前对线粒体MDH的动力学研究未能得出一个能解释初始速度对底物和pH依赖性的一致动力学模型。在本研究中,据我们所知,我们提出了一种新的动力学机制来解释在一系列pH值和底物浓度下获得的动力学数据。在各种反应物浓度下获得正向和反向反应方向的进程曲线,以确定相关的动力学参数。实验在生理相关离子强度0.17 M、pH值在6.5至9.0之间以及25℃的条件下进行。所建立的模型基于之前观察到的NADH与MDH结合时质子的摄取,以及MDH催化的NADH氧化可能遵循有序的双底物双产物机制,即NADH/NAD先与酶结合,随后草酰乙酸/L-苹果酸再结合。这一基本机制被扩展以考虑额外的离子状态,从而解释动力学行为对pH的依赖性,由此产生了我们认为的第一个能解释反应速度对底物和pH依赖性的动力学模型。

相似文献

1
Determination of the catalytic mechanism for mitochondrial malate dehydrogenase.
Biophys J. 2015 Jan 20;108(2):408-19. doi: 10.1016/j.bpj.2014.11.3467.
4
Kinetic mechanism of the molecular forms of chicken liver mitochondrial malate dehydrogenase.
Int J Biochem. 1983;15(4):539-45. doi: 10.1016/0020-711x(83)90128-3.
5
Simulation of the enzyme reaction mechanism of malate dehydrogenase.
Biochemistry. 1997 Apr 22;36(16):4800-16. doi: 10.1021/bi962734n.
7
Purification, properties, and kinetic studies of cytoplasmic malate dehydrogenase from Taenia solium cysticerci.
Parasitol Res. 2009 Jul;105(1):175-83. doi: 10.1007/s00436-009-1380-6. Epub 2009 Mar 10.
8
Catalytic mechanism and kinetics of malate dehydrogenase.
Essays Biochem. 2024 Oct 3;68(2):73-82. doi: 10.1042/EBC20230086.
9
Purification and characterization of the plastid-localized NAD-dependent malate dehydrogenase from Arabidopsis thaliana.
Biotechnol Appl Biochem. 2016 Jul;63(4):490-6. doi: 10.1002/bab.1406. Epub 2015 Aug 28.

引用本文的文献

1
Enzymes helping enzymes: Oxaloacetate decarboxylase increases malate dehydrogenase's turnover number.
PNAS Nexus. 2025 Apr 25;4(5):pgaf134. doi: 10.1093/pnasnexus/pgaf134. eCollection 2025 May.
2
Function of the alternative electron transport chain in the mitosome.
bioRxiv. 2024 Oct 1:2024.10.01.616074. doi: 10.1101/2024.10.01.616074.
3
Catalytic mechanism and kinetics of malate dehydrogenase.
Essays Biochem. 2024 Oct 3;68(2):73-82. doi: 10.1042/EBC20230086.
4
Roles of and genes in energy metabolism of brown planthopper, .
Front Physiol. 2023 Jun 21;14:1213654. doi: 10.3389/fphys.2023.1213654. eCollection 2023.
5
C tracer analysis suggests extensive recycling of endogenous CO in vivo.
Cancer Metab. 2022 Jul 7;10(1):11. doi: 10.1186/s40170-022-00287-8.
8
A human pluripotent stem cell model for the analysis of metabolic dysfunction in hepatic steatosis.
iScience. 2020 Dec 11;24(1):101931. doi: 10.1016/j.isci.2020.101931. eCollection 2021 Jan 22.
10
Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase.
Nat Commun. 2020 Apr 23;11(1):1970. doi: 10.1038/s41467-020-15839-z.

本文引用的文献

2
Analysis of the kinetics and bistability of ubiquinol:cytochrome c oxidoreductase.
Biophys J. 2013 Jul 16;105(2):343-55. doi: 10.1016/j.bpj.2013.05.033.
3
A century of enzyme kinetic analysis, 1913 to 2013.
FEBS Lett. 2013 Sep 2;587(17):2753-66. doi: 10.1016/j.febslet.2013.07.012. Epub 2013 Jul 12.
4
Identification of the kinetic mechanism of succinyl-CoA synthetase.
Biosci Rep. 2013 Jan 18;33(1):145-63. doi: 10.1042/BSR20120069.
5
A biophysical model of the mitochondrial ATP-Mg/P(i) carrier.
Biophys J. 2012 Oct 3;103(7):1616-25. doi: 10.1016/j.bpj.2012.08.050. Epub 2012 Oct 2.
6
Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase.
BMC Biochem. 2011 Sep 26;12:53. doi: 10.1186/1471-2091-12-53.
7
Identification of the catalytic mechanism and estimation of kinetic parameters for fumarase.
J Biol Chem. 2011 Jun 17;286(24):21100-9. doi: 10.1074/jbc.M110.214452. Epub 2011 Apr 15.
9
Kinetics and regulation of mammalian NADH-ubiquinone oxidoreductase (Complex I).
Biophys J. 2010 Sep 8;99(5):1426-36. doi: 10.1016/j.bpj.2010.06.063.
10
A database of thermodynamic quantities for the reactions of glycolysis and the tricarboxylic acid cycle.
J Phys Chem B. 2010 Dec 16;114(49):16068-82. doi: 10.1021/jp911381p. Epub 2010 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验