Suppr超能文献

基于最远距离最近邻准则的主动学习在解决面部年龄分类中不完全数据问题的应用。

Active learning for solving the incomplete data problem in facial age classification by the furthest nearest-neighbor criterion.

机构信息

Institution for Infocomm Research, Connexis, Singapore.

出版信息

IEEE Trans Image Process. 2011 Jul;20(7):2049-62. doi: 10.1109/TIP.2011.2106794. Epub 2011 Jan 17.

Abstract

Facial age classification is an approach to classify face images into one of several predefined age groups. One of the difficulties in applying learning techniques to the age classification problem is the large amount of labeled training data required. Acquiring such training data is very costly in terms of age progress, privacy, human time, and effort. Although unlabeled face images can be obtained easily, it would be expensive to manually label them on a large scale and getting the ground truth. The frugal selection of the unlabeled data for labeling to quickly reach high classification performance with minimal labeling efforts is a challenging problem. In this paper, we present an active learning approach based on an online incremental bilateral two-dimension linear discriminant analysis (IB2DLDA) which initially learns from a small pool of labeled data and then iteratively selects the most informative samples from the unlabeled set to increasingly improve the classifier. Specifically, we propose a novel data selection criterion called the furthest nearest-neighbor (FNN) that generalizes the margin-based uncertainty to the multiclass case and which is easy to compute, so that the proposed active learning algorithm can handle a large number of classes and large data sizes efficiently. Empirical experiments on FG-NET and Morph databases together with a large unlabeled data set for age categorization problems show that the proposed approach can achieve results comparable or even outperform a conventionally trained active classifier that requires much more labeling effort. Our IB2DLDA-FNN algorithm can achieve similar results much faster than random selection and with fewer samples for age categorization. It also can achieve comparable results with active SVM but is much faster than active SVM in terms of training because kernel methods are not needed. The results on the face recognition database and palmprint/palm vein database showed that our approach can handle problems with large number of classes. Our contributions in this paper are twofold. First, we proposed the IB2DLDA-FNN, the FNN being our novel idea, as a generic on-line or active learning paradigm. Second, we showed that it can be another viable tool for active learning of facial age range classification.

摘要

面部年龄分类是一种将人脸图像分类到几个预定义年龄组之一的方法。将学习技术应用于年龄分类问题的困难之一是需要大量的标记训练数据。从年龄进展、隐私、人力和时间的角度来看,获取这些训练数据的成本非常高。虽然可以轻松获得未标记的人脸图像,但大规模手动标记它们并获取真实情况的成本将非常高。以最少的标记工作量快速达到高精度分类性能的节俭选择未标记数据进行标记是一个具有挑战性的问题。在本文中,我们提出了一种基于在线增量双边二维线性判别分析(IB2DLDA)的主动学习方法,该方法最初从一小部分标记数据中学习,然后从未标记集中迭代选择最具信息量的样本,以逐步提高分类器的性能。具体来说,我们提出了一种新的数据选择标准,称为最远最近邻(FNN),它将基于边缘的不确定性推广到多类情况,并且易于计算,因此所提出的主动学习算法可以有效地处理大量类别和大数据量。在 FG-NET 和 Morph 数据库上进行的实验以及一个用于年龄分类问题的大型未标记数据集的实验表明,所提出的方法可以取得与需要更多标记工作的传统训练主动分类器相当甚至更好的结果。我们的 IB2DLDA-FNN 算法可以更快地达到类似的结果,所需样本更少。它还可以与主动 SVM 取得类似的结果,但在训练方面比主动 SVM 快得多,因为不需要核方法。在人脸识别数据库和掌纹/掌静脉数据库上的结果表明,我们的方法可以处理具有大量类别的问题。我们在本文中的贡献有两点。首先,我们提出了 IB2DLDA-FNN,其中 FNN 是我们的新想法,作为一种通用的在线或主动学习范例。其次,我们表明它可以成为面部年龄范围分类主动学习的另一种可行工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验