Suppr超能文献

基于弱标签正则化局部坐标编码的检索式人脸标注。

Retrieval-based face annotation by weak label regularized local coordinate coding.

机构信息

Nanyang Technological University, Singapore.

Zhejiang University, Hangzhou.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2014 Mar;36(3):550-63. doi: 10.1109/TPAMI.2013.145.

Abstract

Auto face annotation, which aims to detect human faces from a facial image and assign them proper human names, is a fundamental research problem and beneficial to many real-world applications. In this work, we address this problem by investigating a retrieval-based annotation scheme of mining massive web facial images that are freely available over the Internet. In particular, given a facial image, we first retrieve the top $(n)$ similar instances from a large-scale web facial image database using content-based image retrieval techniques, and then use their labels for auto annotation. Such a scheme has two major challenges: 1) how to retrieve the similar facial images that truly match the query, and 2) how to exploit the noisy labels of the top similar facial images, which may be incorrect or incomplete due to the nature of web images. In this paper, we propose an effective Weak Label Regularized Local Coordinate Coding (WLRLCC) technique, which exploits the principle of local coordinate coding by learning sparse features, and employs the idea of graph-based weak label regularization to enhance the weak labels of the similar facial images. An efficient optimization algorithm is proposed to solve the WLRLCC problem. Moreover, an effective sparse reconstruction scheme is developed to perform the face annotation task. We conduct extensive empirical studies on several web facial image databases to evaluate the proposed WLRLCC algorithm from different aspects. The experimental results validate its efficacy. We share the two constructed databases "WDB" (714,454 images of 6,025 people) and "ADB" (126,070 images of 1,200 people) with the public. To further improve the efficiency and scalability, we also propose an offline approximation scheme (AWLRLCC) which generally maintains comparable results but significantly reduces the annotation time.

摘要

自动人脸标注旨在从人脸图像中检测人脸并为其分配适当的人名,这是一个基础研究问题,对许多实际应用都有益。在这项工作中,我们通过研究基于检索的注释方案来解决这个问题,该方案利用互联网上免费提供的大规模网络人脸图像来进行挖掘。具体来说,给定一张人脸图像,我们首先使用基于内容的图像检索技术从大型网络人脸图像数据库中检索出前 $(n)$ 个相似实例,然后使用它们的标签进行自动标注。这种方案有两个主要挑战:1)如何检索真正与查询匹配的相似人脸图像;2)如何利用前 $(n)$ 个相似人脸图像的嘈杂标签,由于网络图像的性质,这些标签可能是不正确或不完整的。在本文中,我们提出了一种有效的弱标签正则化局部坐标编码 (WLRLCC) 技术,该技术通过学习稀疏特征来利用局部坐标编码原理,并采用基于图的弱标签正则化思想来增强相似人脸图像的弱标签。提出了一种有效的优化算法来解决 WLRLCC 问题。此外,还开发了一种有效的稀疏重构方案来执行人脸标注任务。我们在几个网络人脸图像数据库上进行了广泛的实验研究,从不同方面评估了所提出的 WLRLCC 算法。实验结果验证了其有效性。我们与公众共享了两个构建的数据库“WDB”(6025 个人的 714454 张图像)和“ADB”(1200 个人的 126070 张图像)。为了进一步提高效率和可扩展性,我们还提出了一种离线近似方案(AWLRLCC),它通常可以保持可比的结果,但显著减少了标注时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验