College of Computer Science and Technology, Jilin University, Changchun 130012, China.
IEEE Trans Image Process. 2011 Sep;20(9):2490-501. doi: 10.1109/TIP.2011.2121084. Epub 2011 Feb 28.
Recent research efforts reveal that color may provide useful information for face recognition. For different visual tasks, the choice of a color space is generally different. How can a color space be sought for the specific face recognition problem? To address this problem, this paper represents a color image as a third-order tensor and presents the tensor discriminant color space (TDCS) model. The model can keep the underlying spatial structure of color images. With the definition of n-mode between-class scatter matrices and within-class scatter matrices, TDCS constructs an iterative procedure to obtain one color space transformation matrix and two discriminant projection matrices by maximizing the ratio of these two scatter matrices. The experiments are conducted on two color face databases, AR and Georgia Tech face databases, and the results show that both the performance and the efficiency of the proposed method are better than those of the state-of-the-art color image discriminant model, which involve one color space transformation matrix and one discriminant projection matrix, specifically in a complicated face database with various pose variations.
最近的研究努力表明,颜色可能为人脸识别提供有用的信息。对于不同的视觉任务,颜色空间的选择通常是不同的。那么如何为特定的人脸识别问题寻找颜色空间呢?为了解决这个问题,本文将彩色图像表示为三阶张量,并提出了张量判别颜色空间(TDCS)模型。该模型可以保持彩色图像的底层空间结构。通过定义 n 模式类间散布矩阵和类内散布矩阵,TDCS 通过最大化这两个散布矩阵的比值来构造一个迭代过程,以获得一个颜色空间变换矩阵和两个判别投影矩阵。实验在两个彩色人脸数据库,AR 和佐治亚理工学院人脸数据库上进行,结果表明,所提出的方法在性能和效率上均优于现有的涉及一个颜色空间变换矩阵和一个判别投影矩阵的先进彩色图像判别模型,尤其是在具有各种姿态变化的复杂人脸数据库中。