Suppr超能文献

hERG 的 N 端尾部含有一个调节通道失活的两亲性α螺旋。

The N-terminal tail of hERG contains an amphipathic α-helix that regulates channel deactivation.

机构信息

Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.

出版信息

PLoS One. 2011 Jan 13;6(1):e16191. doi: 10.1371/journal.pone.0016191.

Abstract

The cytoplasmic N-terminal domain of the human ether-a-go-go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N-terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N-terminal 135 residues of hERG contains a previously described Per-Arnt-Sim (PAS) domain (residues 26-135) as well as an amphipathic α-helix (residues 13-23) and an initial unstructured segment (residues 2-9). Deletion of residues 2-25, only the unstructured segment (residues 2-9) or replacement of the α-helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α-helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N-terminal α-helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel.

摘要

人类 ether-a-go-go 相关基因 (hERG) K+ 通道的细胞质 N 端结构域对于通道的缓慢失活动力学至关重要。然而,N 端结构域调节失活的机制仍有待确定。在这里,我们展示了 hERG 的 N 端 135 个残基的溶液 NMR 结构包含以前描述的 Per-Arnt-Sim (PAS) 结构域(残基 26-135)以及一个两亲性α-螺旋(残基 13-23)和一个初始无规卷曲片段(残基 2-9)。缺失残基 2-25,仅无规卷曲片段(残基 2-9)或用柔性接头替换α-螺旋都会导致失活速度加快。因此,初始柔性片段和α-螺旋都需要,但都不足以赋予缓慢的失活动力学。丙氨酸扫描诱变鉴定出初始无规卷曲片段中的 R5 和 G6 对于缓慢失活是关键的。螺旋区域的丙氨酸突变体表现出的表型不那么明显。我们提出 PAS 结构域与通道的核心区域紧密结合,N 端α-螺旋确保柔性尾巴正确定向与激活门控机制相互作用,以稳定通道的开放状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca4a/3020963/542dc5a7dbb7/pone.0016191.g001.jpg

相似文献

1
The N-terminal tail of hERG contains an amphipathic α-helix that regulates channel deactivation.
PLoS One. 2011 Jan 13;6(1):e16191. doi: 10.1371/journal.pone.0016191.
3
An intracellular hydrophobic nexus critical for hERG1 channel slow deactivation.
Biophys J. 2024 Jul 16;123(14):2024-2037. doi: 10.1016/j.bpj.2024.01.010. Epub 2024 Jan 12.
4
hERG potassium channel gating is mediated by N- and C-terminal region interactions.
J Gen Physiol. 2011 Mar;137(3):315-25. doi: 10.1085/jgp.201010582.
5
Role of the cytoplasmic N-terminal Cap and Per-Arnt-Sim (PAS) domain in trafficking and stabilization of Kv11.1 channels.
J Biol Chem. 2014 May 16;289(20):13782-91. doi: 10.1074/jbc.M113.531277. Epub 2014 Apr 2.
6
Effect of S5P alpha-helix charge mutants on inactivation of hERG K+ channels.
J Physiol. 2006 Jun 1;573(Pt 2):291-304. doi: 10.1113/jphysiol.2006.108332. Epub 2006 Mar 23.
8
9
Multiple interactions between cytoplasmic domains regulate slow deactivation of Kv11.1 channels.
J Biol Chem. 2014 Sep 12;289(37):25822-32. doi: 10.1074/jbc.M114.558379. Epub 2014 Jul 29.
10

引用本文的文献

1
Photoinhibition of the hERG potassium channel PAS domain by ultraviolet light speeds channel closing.
Biophys J. 2024 Aug 20;123(16):2392-2405. doi: 10.1016/j.bpj.2024.05.024. Epub 2024 May 24.
2
A hydrophobic nexus at the heart of hERG K channel gating.
Biophys J. 2024 Jul 16;123(14):1907-1909. doi: 10.1016/j.bpj.2024.03.016. Epub 2024 Mar 12.
3
An intracellular hydrophobic nexus critical for hERG1 channel slow deactivation.
Biophys J. 2024 Jul 16;123(14):2024-2037. doi: 10.1016/j.bpj.2024.01.010. Epub 2024 Jan 12.
4
An Insight into the Potassium Currents of hERG and Their Simulation.
Molecules. 2023 Apr 16;28(8):3514. doi: 10.3390/molecules28083514.
5
Binding of RPR260243 at the intracellular side of the hERG1 channel pore domain slows closure of the helix bundle crossing gate.
Front Mol Biosci. 2023 Feb 23;10:1137368. doi: 10.3389/fmolb.2023.1137368. eCollection 2023.
6
Conformation-sensitive antibody reveals an altered cytosolic PAS/CNBh assembly during hERG channel gating.
Proc Natl Acad Sci U S A. 2021 Nov 2;118(44). doi: 10.1073/pnas.2108796118.
7
Molecular Insights Into the Gating Kinetics of the Cardiac hERG Channel, Illuminated by Structure and Molecular Dynamics.
Front Pharmacol. 2021 Jun 8;12:687007. doi: 10.3389/fphar.2021.687007. eCollection 2021.
8
Gating and regulation of KCNH (ERG, EAG, and ELK) channels by intracellular domains.
Channels (Austin). 2020 Dec;14(1):294-309. doi: 10.1080/19336950.2020.1816107.
9
Discovery of a heme-binding domain in a neuronal voltage-gated potassium channel.
J Biol Chem. 2020 Sep 18;295(38):13277-13286. doi: 10.1074/jbc.RA120.014150. Epub 2020 Jul 28.
10
The EAG Voltage-Dependent K Channel Subfamily: Similarities and Differences in Structural Organization and Gating.
Front Pharmacol. 2020 Apr 15;11:411. doi: 10.3389/fphar.2020.00411. eCollection 2020.

本文引用的文献

2
Maximum Entropy Spectral Reconstruction of Non-Uniformly Sampled Data.
Concepts Magn Reson Part A Bridg Educ Res. 2008 Nov 1;32A(6):436-448. doi: 10.1002/cmr.a.20126.
4
NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker.
Biochem Biophys Res Commun. 2010 Dec 3;403(1):126-32. doi: 10.1016/j.bbrc.2010.10.132. Epub 2010 Nov 3.
5
Mutations within the S4-S5 linker alter voltage sensor constraints in hERG K+ channels.
Biophys J. 2010 Nov 3;99(9):2841-52. doi: 10.1016/j.bpj.2010.08.030.
6
Cysteine 723 in the C-linker segment confers oxidative inhibition of hERG1 potassium channels.
J Physiol. 2010 Aug 15;588(Pt 16):2999-3009. doi: 10.1113/jphysiol.2010.192468. Epub 2010 Jun 14.
7
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.
8
Structure and signaling mechanism of Per-ARNT-Sim domains.
Structure. 2009 Oct 14;17(10):1282-94. doi: 10.1016/j.str.2009.08.011.
9
A recombinant N-terminal domain fully restores deactivation gating in N-truncated and long QT syndrome mutant hERG potassium channels.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13082-7. doi: 10.1073/pnas.0900180106. Epub 2009 Jul 27.
10
TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
J Biomol NMR. 2009 Aug;44(4):213-23. doi: 10.1007/s10858-009-9333-z. Epub 2009 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验