Suppr超能文献

纳米材料在基于氧化还原的下一代储能器件超级电容器中的作用。

The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.

机构信息

Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, United Kingdom.

出版信息

Nanoscale. 2011 Mar;3(3):839-55. doi: 10.1039/c0nr00594k. Epub 2011 Jan 20.

Abstract

The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.

摘要

发展更高效的电力存储是满足未来社会和环境需求的迫切要求。这种对更可持续、更高效的储能的需求,促使人们重新对先进电容器设计产生了科学和商业兴趣,其中纳米技术所包含的一系列实验技术和理念正在发挥关键作用。电容器可以快速充电和放电,是许多类型电路的主要组成部分,从微处理器到大功率电源,但与电池相比,通常具有相对较低的储能能力。为了在不影响其固有高功率密度和优异的循环稳定性的情况下提高能量密度,正在对具有定制形态和性能的纳米结构材料在电化学超级电容器中的应用进行深入研究。特别是,预计利用电解质离子的物理吸附或氧化还原反应的电极材料将弥合具有高能量密度的电池和具有高功率密度的电容器之间的性能差距。在这篇综述中,我们介绍了一些应用于电化学超级电容器的新型纳米材料体系,并展示了如何通过调整材料形态、化学和物理性质来提高电化学超级电容器的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验