Muralee Gopi Chandu V V, Reddy Araveeti Eswar, Rao Sunkara Srinivasa, Raghavendra K V G, Suneetha Maduru, Kim Hee-Je, Ramesh R
Department of Electrical Engineering, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates.
Department of Chemistry, Malla Reddy College of Engineering and Technology Maisammaguda Secunderabad India-500100.
Nanoscale Adv. 2025 Mar 17;7(9):2742-2750. doi: 10.1039/d5na00070j. eCollection 2025 Apr 29.
This study uses a facile one-step hydrothermal method to successfully synthesize hierarchical dandelion flower-like CuCoO/CoS structures on Ni foam. The composite exhibits a unique dandelion flower-like architecture comprising interconnected nanograss arrays (NGAs), resulting in a significantly higher surface area than individual CuCoO and CoS electrodes. Electrochemical characterization reveals that the CuCoO/CoS electrode exhibits superior electrochemical performance, demonstrating battery-type behavior with well-defined redox peaks in cyclic voltammetry and distinct plateaus in galvanostatic charge-discharge curves. The composite electrode delivers a high specific capacity of 217.86 mA h g at a current density of 6 mA cm, surpassing the performance of individual CuCoO (142.54 mA h g) and CoS (160.37 mA h g) electrodes. Moreover, the composite electrodes exhibit outstanding cycling life, retaining 86.23% of their initial capacity in over 3000 cycles. Electrochemical impedance spectroscopy analysis confirms lower charge transfer resistance and solution resistance for the composite electrode, indicating improved charge transfer kinetics and ion diffusion. These findings demonstrate that the hierarchical CuCoO/CoS composite holds significant promise as a high-performance battery-type electrode material for supercapacitor applications.
本研究采用简便的一步水热法,成功地在泡沫镍上合成了分级蒲公英花状的CuCoO/CoS结构。该复合材料呈现出独特的蒲公英花状结构,由相互连接的纳米草阵列(NGAs)组成,其表面积比单独的CuCoO和CoS电极显著更高。电化学表征表明,CuCoO/CoS电极表现出优异的电化学性能,在循环伏安法中具有明确的氧化还原峰,在恒电流充放电曲线中具有明显的平台,表现出电池型行为。复合电极在6 mA cm的电流密度下提供了217.86 mA h g的高比容量,超过了单独的CuCoO(142.54 mA h g)和CoS(160.37 mA h g)电极的性能。此外,复合电极表现出出色的循环寿命,在超过3000次循环中保留了其初始容量的86.23%。电化学阻抗谱分析证实了复合电极的电荷转移电阻和溶液电阻较低,表明电荷转移动力学和离子扩散得到改善。这些发现表明,分级CuCoO/CoS复合材料作为超级电容器应用的高性能电池型电极材料具有巨大的潜力。