Suppr超能文献

具有低活性质量的电极与协同机制实现大比电容的制备。

Production of Large Specific Capacitance by Electrodes with Low Active Mass and Synergistic Mechanisms.

作者信息

Tsai Hsin-Jung, Yang Yung-Kai, Chen Ping-Chun, Liao Yu-Hsiang, Hsu Wen-Kuang

机构信息

Department of Materials Science and Engineering, National Tsin-Hua University, Hsinchu City 300044, Taiwan.

出版信息

ACS Omega. 2024 Jan 9;9(3):3923-3930. doi: 10.1021/acsomega.3c08313. eCollection 2024 Jan 23.

Abstract

Decoration of vanadium nitride nanoparticles on carbon nanotubes creates electrodes with three different energy storage mechanisms that operate synergistically to give a high specific capacitance with a low active mass. Calculation and measurements further indicate the power and energy density to be as high as 10-10 W/kg and 10 Wh/kg, respectively. Particle attachment also greatly improves the capacitive coefficient, including ionic transmittance, charge transfer, porosity, and conductivity. Corrosion tests based on the Tafel method reveal the corrosion potential and current of electrodes as low as -0.721 V and 7.53 × 10 A, respectively.

摘要

在碳纳米管上装饰氮化钒纳米颗粒可制造出具有三种不同储能机制的电极,这些机制协同运作,以低活性质量实现高比电容。计算和测量进一步表明,功率密度和能量密度分别高达10-10 W/kg和10 Wh/kg。颗粒附着还极大地提高了电容系数,包括离子传输率、电荷转移、孔隙率和电导率。基于塔菲尔方法的腐蚀测试表明,电极的腐蚀电位和电流分别低至-0.721 V和7.53×10 A。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be68/10809675/aaf7578bf99a/ao3c08313_0001.jpg

相似文献

1
Production of Large Specific Capacitance by Electrodes with Low Active Mass and Synergistic Mechanisms.
ACS Omega. 2024 Jan 9;9(3):3923-3930. doi: 10.1021/acsomega.3c08313. eCollection 2024 Jan 23.
4
Novel Hybrid Nanoparticles of Vanadium Nitride/Porous Carbon as an Anode Material for Symmetrical Supercapacitor.
Nanomicro Lett. 2017;9(1):6. doi: 10.1007/s40820-016-0105-5. Epub 2016 Sep 13.
6
Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries.
Nanomaterials (Basel). 2021 Apr 20;11(4):1054. doi: 10.3390/nano11041054.
7
Nanocomposites based on hierarchical porous carbon fiber@vanadium nitride nanoparticles as supercapacitor electrodes.
Dalton Trans. 2018 Mar 28;47(12):4128-4138. doi: 10.1039/c7dt04432a. Epub 2018 Feb 22.
9
Functionalization of Metal Electrodes for Advanced Asymmetric Supercapacitors.
Front Chem. 2019 Jul 16;7:512. doi: 10.3389/fchem.2019.00512. eCollection 2019.

本文引用的文献

1
Challenges and Recent Advances in High Capacity Li-Rich Cathode Materials for High Energy Density Lithium-Ion Batteries.
Adv Mater. 2021 Dec;33(50):e2005937. doi: 10.1002/adma.202005937. Epub 2021 Mar 26.
3
Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.
Adv Mater. 2015 Sep 23;27(36):5264-79. doi: 10.1002/adma.201501115. Epub 2015 Aug 13.
5
Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors.
Adv Mater. 2013 Sep 25;25(36):5091-7. doi: 10.1002/adma.201301465. Epub 2013 Jul 4.
6
High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode.
Nano Lett. 2013 Jun 12;13(6):2628-33. doi: 10.1021/nl400760a. Epub 2013 May 3.
7
Materials science. True performance metrics in electrochemical energy storage.
Science. 2011 Nov 18;334(6058):917-8. doi: 10.1126/science.1213003.
8
A review of electrode materials for electrochemical supercapacitors.
Chem Soc Rev. 2012 Jan 21;41(2):797-828. doi: 10.1039/c1cs15060j. Epub 2011 Jul 21.
9
The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.
Nanoscale. 2011 Mar;3(3):839-55. doi: 10.1039/c0nr00594k. Epub 2011 Jan 20.
10
Battery materials for ultrafast charging and discharging.
Nature. 2009 Mar 12;458(7235):190-3. doi: 10.1038/nature07853.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验