Suppr超能文献

CUP-SHAPED COTYLEDON 基因在拟南芥叶片发育中的进化和多样化作用。

Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development.

机构信息

Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, F-78026 Versailles Cedex, France.

出版信息

Plant Cell. 2011 Jan;23(1):54-68. doi: 10.1105/tpc.110.081448. Epub 2011 Jan 21.

Abstract

CUP-SHAPED COTYLEDON2 (CUC2) and the interacting microRNA miR164 regulate leaf margin dissection. Here, we further investigate the evolution and the specific roles of the CUC1 to CUC3 genes during Arabidopsis thaliana leaf serration. We show that CUC2 is essential for dissecting the leaves of a wide range of lobed/serrated Arabidopsis lines. Inactivation of CUC3 leads to a partial suppression of the serrations, indicating a role for this gene in leaf shaping. Morphometric analysis of leaf development and genetic analysis provide evidence for different temporal contributions of CUC2 and CUC3. Chimeric constructs mixing CUC regulatory sequences with different coding sequences reveal both redundant and specific roles for the three CUC genes that could be traced back to changes in their expression pattern or protein activity. In particular, we show that CUC1 triggers the formation of leaflets when ectopically expressed instead of CUC2 in the developing leaves. These divergent fates of the CUC1 and CUC2 genes after their formation by the duplication of a common ancestor is consistent with the signature of positive selection detected on the ancestral branch to CUC1. Combining experimental observations with the retraced origin of the CUC genes in the Brassicales, we propose an evolutionary scenario for the CUC genes.

摘要

杯状子叶 2 型(CUC2)和相互作用的 microRNA miR164 调控叶片边缘分裂。在这里,我们进一步研究了 CUC1 到 CUC3 基因在拟南芥叶片锯齿形成过程中的进化和特定作用。我们表明,CUC2 对于分裂各种裂片/锯齿状拟南芥系的叶片是必需的。CUC3 的失活导致锯齿的部分抑制,表明该基因在叶片塑形中起作用。叶片发育的形态计量分析和遗传分析为 CUC2 和 CUC3 的不同时间贡献提供了证据。混合具有不同编码序列的 CUC 调节序列的嵌合构建体揭示了三个 CUC 基因的冗余和特定作用,可以追溯到它们的表达模式或蛋白活性的变化。特别是,我们表明,当在发育中的叶片中外源表达时,CUC1 会触发小叶的形成,而不是 CUC2。在它们由共同祖先的复制形成之后,CUC1 和 CUC2 基因的这些不同命运与在 CUC1 的祖先分支上检测到的正选择特征一致。我们将实验观察结果与 Brassicales 中 CUC 基因的追溯起源相结合,提出了 CUC 基因的进化情景。

相似文献

1
Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development.
Plant Cell. 2011 Jan;23(1):54-68. doi: 10.1105/tpc.110.081448. Epub 2011 Jan 21.
2
A conserved role for CUP-SHAPED COTYLEDON genes during ovule development.
Plant J. 2015 Aug;83(4):732-42. doi: 10.1111/tpj.12923. Epub 2015 Jul 23.
4
The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis.
Plant Cell. 2006 Nov;18(11):2929-45. doi: 10.1105/tpc.106.045617. Epub 2006 Nov 10.
5
NGATHA-LIKEs Control Leaf Margin Development by Repressing Transcription.
Plant Physiol. 2020 Sep;184(1):345-358. doi: 10.1104/pp.19.01598. Epub 2020 Jul 1.
7
Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation.
Plant Cell. 2006 Nov;18(11):2946-57. doi: 10.1105/tpc.106.045716. Epub 2006 Nov 22.
9
The AtHB1 Transcription Factor Controls the miR164-CUC2 Regulatory Node to Modulate Leaf Development.
Plant Cell Physiol. 2020 Mar 1;61(3):659-670. doi: 10.1093/pcp/pcz233.
10
OsmiR164-targeted OsNAM, a boundary gene, plays important roles in rice leaf and panicle development.
Plant J. 2021 Apr;106(1):41-55. doi: 10.1111/tpj.15143. Epub 2021 Feb 1.

引用本文的文献

5
Evolution of NAC transcription factors from early land plants to domesticated crops.
Plant Cell Physiol. 2025 May 17;66(4):566-580. doi: 10.1093/pcp/pcae133.
7
Selection of Stable Reference Genes for QRT-PCR in Tree Peony 'Doulv' and Functional Analysis of .
Plants (Basel). 2024 Jun 24;13(13):1741. doi: 10.3390/plants13131741.
8
A CUC1/auxin genetic module links cell polarity to patterned tissue growth and leaf shape diversity in crucifer plants.
Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2321877121. doi: 10.1073/pnas.2321877121. Epub 2024 Jun 21.
9
Shaping leaves through TALE homeodomain transcription factors.
J Exp Bot. 2024 Jun 7;75(11):3220-3232. doi: 10.1093/jxb/erae118.

本文引用的文献

1
Polyploidy and angiosperm diversification.
Am J Bot. 2009 Jan;96(1):336-48. doi: 10.3732/ajb.0800079.
2
Mechanisms of leaf tooth formation in Arabidopsis.
Plant J. 2010 May;62(3):429-41. doi: 10.1111/j.1365-313X.2010.04156.x. Epub 2010 Feb 1.
3
Co-ordination of developmental processes by small RNAs during leaf development.
J Exp Bot. 2010 Mar;61(5):1277-91. doi: 10.1093/jxb/erp397. Epub 2010 Jan 22.
4
Genome sequence of the palaeopolyploid soybean.
Nature. 2010 Jan 14;463(7278):178-83. doi: 10.1038/nature08670.
5
Leaf development: what it needs to be complex.
Curr Opin Plant Biol. 2010 Feb;13(1):75-82. doi: 10.1016/j.pbi.2009.09.017. Epub 2009 Oct 23.
6
Stage-specific regulation of Solanum lycopersicum leaf maturation by class 1 KNOTTED1-LIKE HOMEOBOX proteins.
Plant Cell. 2009 Oct;21(10):3078-92. doi: 10.1105/tpc.109.068148. Epub 2009 Oct 9.
7
Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology?
J Plant Res. 2010 Jan;123(1):43-55. doi: 10.1007/s10265-009-0256-2. Epub 2009 Sep 26.
9
Small RNAs and their roles in plant development.
Annu Rev Cell Dev Biol. 2009;25:21-44. doi: 10.1146/annurev.cellbio.042308.113417.
10
Origin, biogenesis, and activity of plant microRNAs.
Cell. 2009 Feb 20;136(4):669-87. doi: 10.1016/j.cell.2009.01.046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验