Suppr超能文献

纳米颗粒配体密度对树突状细胞靶向疫苗的影响。

The impact of nanoparticle ligand density on dendritic-cell targeted vaccines.

机构信息

Department of Biomedical Engineering, Yale University, PO Box 208260, New Haven, CT 06511, USA.

出版信息

Biomaterials. 2011 Apr;32(11):3094-105. doi: 10.1016/j.biomaterials.2010.12.054. Epub 2011 Jan 22.

Abstract

Dendritic-cell (DC) targeted antigen delivery systems hold promise for enhancing vaccine efficacy and delivery of therapeutics. However, it is not known how the number and density of targeting ligands on such systems may affect DC function and subsequent T cell response. We modified the surface of biodegradable nanoparticles loaded with antigen with different densities of the mAb to the DC lectin DEC-205 receptor and assessed changes in the cytokine response of DCs and T cells. DEC-205 targeted nanoparticles unexpectedly induced a differential cytokine response that depended on the density of ligands on the surface. Strikingly, nanoparticle surface density of DEC-205 mAb increased the amount of anti-inflammatory, IL-10, produced by DCs and T cells. Boosting mice with DEC-205 targeted OVA-nanoparticles after immunization with an antigen in CFA induced a similar pattern of IL-10 response. The correlation between DC production of IL-10 as a function of the density of anti-DEC-205 is shown to be due to cross-linking of the DEC-205 receptor. Cross-linking also increased DC expression of the scavenger receptor CD36, and blockade of CD36 largely abrogated the IL-10 response. Our studies highlight the importance of target ligand density in the design of vaccine delivery systems.

摘要

树突状细胞(DC)靶向抗原递呈系统有望提高疫苗的疗效和治疗药物的递呈效率。然而,目前尚不清楚这些系统上靶向配体的数量和密度如何影响 DC 功能和随后的 T 细胞反应。我们用抗 DEC-205 受体的单克隆抗体(mAb)对负载抗原的可生物降解纳米颗粒进行了不同密度的表面修饰,并评估了 DC 和 T 细胞的细胞因子反应的变化。出乎意料的是,靶向 DEC-205 的纳米颗粒诱导了一种依赖于表面配体密度的差异细胞因子反应。引人注目的是,DEC-205 mAb 纳米颗粒表面密度增加了 DC 和 T 细胞产生的抗炎细胞因子 IL-10 的量。在 CFA 中用抗原免疫后,用 DEC-205 靶向 OVA-纳米颗粒增强小鼠,诱导出相似的 IL-10 反应模式。IL-10 是作为 DEC-205 密度的函数由 DC 产生的,这种相关性是由于 DEC-205 受体的交联。交联还增加了 DC 表达清道夫受体 CD36,而 CD36 的阻断则很大程度上消除了 IL-10 反应。我们的研究强调了在设计疫苗递呈系统时目标配体密度的重要性。

相似文献

1
The impact of nanoparticle ligand density on dendritic-cell targeted vaccines.
Biomaterials. 2011 Apr;32(11):3094-105. doi: 10.1016/j.biomaterials.2010.12.054. Epub 2011 Jan 22.
2
Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study.
J Control Release. 2014 Oct 28;192:209-18. doi: 10.1016/j.jconrel.2014.07.040. Epub 2014 Jul 25.
5
Induction of innate and adaptive immunity by delivery of poly dA:dT to dendritic cells.
Nat Chem Biol. 2013 Apr;9(4):250-6. doi: 10.1038/nchembio.1186. Epub 2013 Feb 17.
8
Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation.
Blood. 2010 Sep 30;116(13):2277-85. doi: 10.1182/blood-2010-02-268425. Epub 2010 Jun 21.
9
Design and immunological evaluation of anti-CD205-tailored PLGA-based nanoparticulate cancer vaccine.
Int J Nanomedicine. 2018 Jan 11;13:367-386. doi: 10.2147/IJN.S144266. eCollection 2018.

引用本文的文献

1
Efferocytosis in dendritic cells: an overlooked immunoregulatory process.
Front Immunol. 2024 May 21;15:1415573. doi: 10.3389/fimmu.2024.1415573. eCollection 2024.
2
Biomaterials-mediated ligation of immune cell surface receptors for immunoengineering.
Immunooncol Technol. 2023 Dec 10;21:100695. doi: 10.1016/j.iotech.2023.100695. eCollection 2024 Mar.
3
Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design.
Front Immunol. 2023 Nov 27;14:1294929. doi: 10.3389/fimmu.2023.1294929. eCollection 2023.
4
Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy.
Adv Sci (Weinh). 2023 Jun;10(18):e2301339. doi: 10.1002/advs.202301339. Epub 2023 Apr 23.
6
Advanced Biomaterials for Cell-Specific Modulation and Restore of Cancer Immunotherapy.
Adv Sci (Weinh). 2022 May;9(16):e2200027. doi: 10.1002/advs.202200027. Epub 2022 Mar 27.
7
The Landscape of Nanovectors for Modulation in Cancer Immunotherapy.
Pharmaceutics. 2022 Feb 11;14(2):397. doi: 10.3390/pharmaceutics14020397.
8
Critical parameters for design and development of multivalent nanoconstructs: recent trends.
Drug Deliv Transl Res. 2022 Oct;12(10):2335-2358. doi: 10.1007/s13346-021-01103-4. Epub 2022 Jan 11.
9
Nanoparticles for generating antigen-specific T cells for immunotherapy.
Semin Immunol. 2021 Aug;56:101541. doi: 10.1016/j.smim.2021.101541. Epub 2021 Dec 23.
10
Therapeutic Liposomal Vaccines for Dendritic Cell Activation or Tolerance.
Front Immunol. 2021 May 13;12:674048. doi: 10.3389/fimmu.2021.674048. eCollection 2021.

本文引用的文献

1
TLR9-targeted biodegradable nanoparticles as immunization vectors protect against West Nile encephalitis.
J Immunol. 2010 Sep 1;185(5):2989-97. doi: 10.4049/jimmunol.1000768. Epub 2010 Jul 26.
2
Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 May-Jun;2(3):205-18. doi: 10.1002/wnan.88.
3
Delivery of a peptide via poly(D,L-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell-stimulatory capacity.
Nanomedicine. 2010 Oct;6(5):651-61. doi: 10.1016/j.nano.2010.03.001. Epub 2010 Mar 27.
4
pH-Sensitive fusogenic polymer-modified liposomes as a carrier of antigenic proteins for activation of cellular immunity.
Biomaterials. 2010 Feb;31(5):943-51. doi: 10.1016/j.biomaterials.2009.10.006. Epub 2009 Oct 21.
5
Targeting glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and II presentation.
Mol Immunol. 2009 Dec;47(2-3):164-74. doi: 10.1016/j.molimm.2009.09.026. Epub 2009 Oct 8.
7
CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior.
Sci Signal. 2009 May 26;2(72):re3. doi: 10.1126/scisignal.272re3.
8
Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy.
Vaccine. 2009 May 18;27(23):3013-21. doi: 10.1016/j.vaccine.2009.03.034. Epub 2009 Apr 3.
9
PEGylated PLGA nanoparticles for the improved delivery of doxorubicin.
Nanomedicine. 2009 Dec;5(4):410-8. doi: 10.1016/j.nano.2009.02.002. Epub 2009 Mar 31.
10
Biomaterials as vaccine adjuvants.
Biotechnol Prog. 2008 Jul-Aug;24(4):807-14. doi: 10.1002/btpr.10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验