Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, Toledo, OH 43614, USA.
J Pharmacol Exp Ther. 2011 Apr;337(1):301-11. doi: 10.1124/jpet.110.178244. Epub 2011 Jan 24.
Benzodiazepines (BDZs) depress neuronal excitability via positive allosteric modulation of inhibitory GABA(A) receptors (GABA(A)R). BDZs and other positive GABA(A)R modulators, including barbiturates, ethanol, and neurosteroids, can also inhibit L-type voltage-gated calcium channels (L-VGCCs), which could contribute to reduced neuronal excitability. Because neuronal L-VGCC function is up-regulated after long-term GABA(A)R modulator exposure, an interaction with L-VGCCs may also play a role in physical dependence. The current studies assessed the effects of BDZs (diazepam, flurazepam, and desalkylflurazepam), allopregnanolone, pentobarbital, and ethanol on whole-cell Ba(2+) currents through recombinant neuronal Ca(v)1.2 and Ca(v)1.3 L-VGCCs expressed with β(3) and α(2)δ-1 in HEK293T cells. Allopregnanolone was the most potent inhibitor (IC(50), ∼10 μM), followed by BDZs (IC(50), ∼50 μM), pentobarbital (IC(50), 0.3-1 mM), and ethanol (IC(50), ∼300 mM). Ca(v)1.3 channels were less sensitive to pentobarbital inhibition than Ca(v)1.2 channels, similar to dihydropyridine (DHP) L-VGCC antagonists. All GABA(A)R modulators induced a negative shift in the steady-state inactivation curve of Ca(v)1.3 channels, but only BDZs and pentobarbital induced a negative shift in Ca(v)1.2 channel inactivation. Mutation of the high-affinity DHP binding site (T1039Y and Q1043M) in Ca(v)1.2 channels reduced pentobarbital potency. Despite the structural similarity between benzothiazepines and BDZs, mutation of an amino acid important for diltiazem potency (I1150A) did not affect diazepam potency. Although L-VGCC inhibition by BDZs occurred at concentrations that are possibly too high to be clinically relevant and is not likely to play a role in the up-regulation of L-VGCCs during long-term treatment, pentobarbital and ethanol inhibited L-VGCCs at clinically relevant concentrations.
苯二氮䓬类药物(Benzodiazepines,BDZs)通过正变构调节抑制性 GABA(A) 受体(GABA(A)R)来抑制神经元兴奋性。BDZs 和其他正变构 GABA(A)R 调节剂,包括巴比妥类药物、乙醇和神经甾体,也可以抑制 L 型电压门控钙通道(L-type voltage-gated calcium channels,L-VGCCs),这可能导致神经元兴奋性降低。由于长期 GABA(A)R 调节剂暴露后神经元 L-VGCC 功能上调,因此与 L-VGCC 的相互作用也可能在躯体依赖中发挥作用。当前的研究评估了 BDZs(地西泮、氟西泮和去甲氟西泮)、别孕烯醇酮、戊巴比妥和乙醇对表达 β3 和 α2δ-1 的重组神经元 Ca(v)1.2 和 Ca(v)1.3 L-VGCC 引起的全细胞 Ba(2+)电流的影响。别孕烯醇酮是最有效的抑制剂(IC50,约 10 μM),其次是 BDZs(IC50,约 50 μM)、戊巴比妥(IC50,0.3-1 mM)和乙醇(IC50,约 300 mM)。与二氢吡啶(Dihydropyridine,DHP)L-VGCC 拮抗剂类似,Ca(v)1.3 通道对戊巴比妥抑制的敏感性低于 Ca(v)1.2 通道。所有 GABA(A)R 调节剂均引起 Ca(v)1.3 通道稳态失活曲线的负移,而只有 BDZs 和戊巴比妥诱导 Ca(v)1.2 通道失活的负移。Ca(v)1.2 通道中高亲和力 DHP 结合位点(T1039Y 和 Q1043M)的突变降低了戊巴比妥的效力。尽管苯并噻嗪类药物和 BDZs 结构相似,但对地尔硫䓬效力很重要的氨基酸(I1150A)的突变并未影响地西泮的效力。尽管 BDZs 对 L-VGCC 的抑制作用发生在可能过高而与临床无关的浓度下,并且不太可能在长期治疗期间 L-VGCC 的上调中发挥作用,但戊巴比妥和乙醇在临床相关浓度下抑制 L-VGCC。