Suppr超能文献

一种新的针对演化算法的群体规模设定方法:多维指派问题的案例研究。

A new approach to population sizing for memetic algorithms: a case study for the multidimensional assignment problem.

机构信息

Department of Computer Science, Royal Holloway London University, Egham, Surrey, United Kingdom.

出版信息

Evol Comput. 2011 Fall;19(3):345-71. doi: 10.1162/EVCO_a_00026. Epub 2011 Jun 20.

Abstract

Memetic algorithms are known to be a powerful technique in solving hard optimization problems. To design a memetic algorithm, one needs to make a host of decisions. Selecting the population size is one of the most important among them. Most of the algorithms in the literature fix the population size to a certain constant value. This reduces the algorithm's quality since the optimal population size varies for different instances, local search procedures, and runtimes. In this paper we propose an adjustable population size. It is calculated as a function of the runtime of the whole algorithm and the average runtime of the local search for the given instance. Note that in many applications the runtime of a heuristic should be limited and, therefore, we use this bound as a parameter of the algorithm. The average runtime of the local search procedure is measured during the algorithm's run. Some coefficients which are independent of the instance and the local search are to be tuned at the design time; we provide a procedure to find these coefficients. The proposed approach was used to develop a memetic algorithm for the multidimensional assignment problem (MAP). We show that our adjustable population size makes the algorithm flexible to perform efficiently for a wide range of running times and local searches and this does not require any additional tuning of the algorithm.

摘要

遗传算法是一种解决困难优化问题的强大技术。设计遗传算法时,需要做出许多决策。选择种群大小是其中最重要的决策之一。文献中的大多数算法将种群大小固定为某个常数。这会降低算法的质量,因为最优的种群大小因不同的实例、局部搜索过程和运行时间而异。在本文中,我们提出了一种可调整的种群大小。它是根据整个算法的运行时间和给定实例的局部搜索的平均运行时间计算得出的。请注意,在许多应用中,启发式的运行时间应该有限制,因此,我们将此限制用作算法的参数。局部搜索过程的平均运行时间在算法运行过程中进行测量。一些与实例和局部搜索无关的系数需要在设计时进行调整;我们提供了一种找到这些系数的方法。所提出的方法用于开发多维分配问题 (MAP) 的遗传算法。我们表明,我们的可调整种群大小使算法能够灵活地在广泛的运行时间和局部搜索中高效执行,而无需对算法进行任何其他调整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验