Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA.
J Pharmacol Exp Ther. 2011 May;337(2):444-50. doi: 10.1124/jpet.110.178137. Epub 2011 Jan 26.
Studies show that kidneys produce 2',3'-cAMP, 2',3'-cAMP is exported and metabolized to 2'-AMP and 3'-AMP, 2'-AMP and 3'-AMP are metabolized to adenosine, 2',3'-cAMP inhibits proliferation of preglomerular vascular smooth muscle cells (PGVSMCs) and glomerular mesangial cells (GMCs), and A(2B) (not A(1), A(2A), or A(3)) adenosine receptors mediate part of the antiproliferative effects of 2',3'-cAMP. These findings suggest that extracellular 2',3'-cAMP attenuates proliferation of PGVSMCs and GMCs partly via conversion to corresponding AMPs, which are metabolized to adenosine that activates A(2B) receptors. This hypothesis predicts that extracellular 2'-AMP and 3'-AMP should exert A(2B) receptor-mediated antiproliferative effects. Therefore, we examined the antiproliferative effects (cell counts) of 2'-AMP and 3'-AMP. In PGVSMCs and GMCs, 2'-AMP and 3'-AMP exerted concentration-dependent antiproliferative effects. 3'-AMP was equipotent with and 2'-AMP was 3-fold less potent than 5'-AMP (prototypical adenosine precursor). In PGVSMCs, the effects of 2'-AMP and 3'-AMP were mimicked by adenosine, and 8-[4-[((4-cyanophenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine (MRS-1754) (A(2B) receptor antagonist) equally blocked the antiproliferative effects of 2'-AMP, 3'-AMP, and adenosine but less effectively blocked the effects of 2',3'-cAMP. Similar results were obtained in GMCs except that MRS-1754 also incompletely blocked the effects of 3'-AMP. We conclude that in PGVSMCs, 2'-AMP and 3'-AMP are antiproliferative, the antiproliferative effects of 2'-AMP and 3'-AMP are mediated nearly entirely by adenosine/A(2B) receptors, and some of the antiproliferative effects of 2',3'-cAMP are independent of adenosine/A(2B) receptors. Similar conclusions apply to GMCs except that 3'-AMP also has actions independent of adenosine/A(2B) receptors. Because A(2B) receptors are renoprotective, 2'-AMP and 3'-AMP may provide renoprotection by generating adenosine that activates A(2B) receptors.
研究表明肾脏产生 2',3'-cAMP,2',3'-cAMP 被输出并代谢为 2'-AMP 和 3'-AMP,2'-AMP 和 3'-AMP 被代谢为腺苷,2',3'-cAMP 抑制肾小球前血管平滑肌细胞 (PGVSMCs) 和肾小球系膜细胞 (GMCs) 的增殖,A(2B)(非 A(1)、A(2A) 或 A(3))腺苷受体介导 2',3'-cAMP 的部分抗增殖作用。这些发现表明细胞外 2',3'-cAMP 通过转化为相应的 AMPs 部分减弱 PGVSMCs 和 GMCs 的增殖,这些 AMPs 被代谢为激活 A(2B) 受体的腺苷。该假说预测细胞外 2'-AMP 和 3'-AMP 应发挥 A(2B) 受体介导的抗增殖作用。因此,我们检查了 2'-AMP 和 3'-AMP 的抗增殖作用(细胞计数)。在 PGVSMCs 和 GMCs 中,2'-AMP 和 3'-AMP 呈浓度依赖性抗增殖作用。3'-AMP 与 5'-AMP(典型的腺苷前体)具有同等效力,而 2'-AMP 的效力则低 3 倍。在 PGVSMCs 中,2'-AMP 和 3'-AMP 的作用被腺苷模拟,8-[4-[[(4-氰基苯甲酰基)氨基]甲基]氧基]苯基]-1,3-二(n-丙基)黄嘌呤(MRS-1754)(A(2B) 受体拮抗剂)同样阻断 2'-AMP、3'-AMP 和腺苷的抗增殖作用,但对 2',3'-cAMP 的作用阻断效果较差。在 GMCs 中得到了类似的结果,只是 MRS-1754 也不完全阻断 3'-AMP 的作用。我们的结论是,在 PGVSMCs 中,2'-AMP 和 3'-AMP 具有抗增殖作用,2'-AMP 和 3'-AMP 的抗增殖作用几乎完全由腺苷/A(2B) 受体介导,而 2',3'-cAMP 的部分抗增殖作用与腺苷/A(2B) 受体无关。类似的结论适用于 GMCs,只是 3'-AMP 也具有独立于腺苷/A(2B) 受体的作用。由于 A(2B) 受体具有肾保护作用,2'-AMP 和 3'-AMP 可能通过生成激活 A(2B) 受体的腺苷来提供肾保护作用。