Suppr超能文献

罗塞塔 EPR:一种从稀疏 EPR 数据中确定蛋白质结构的集成工具。

RosettaEPR: an integrated tool for protein structure determination from sparse EPR data.

机构信息

Center for Structural Biology, Vanderbilt University, Nashville, TN 37212, USA.

出版信息

J Struct Biol. 2011 Mar;173(3):506-14. doi: 10.1016/j.jsb.2010.10.013. Epub 2010 Oct 26.

Abstract

Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) is often used for the structural characterization of proteins that elude other techniques, such as X-ray crystallography and nuclear magnetic resonance (NMR). However, high-resolution structures are difficult to obtain due to uncertainty in the spin label location and sparseness of experimental data. Here, we introduce RosettaEPR, which has been designed to improve de novo high-resolution protein structure prediction using sparse SDSL-EPR distance data. The "motion-on-a-cone" spin label model is converted into a knowledge-based potential, which was implemented as a scoring term in Rosetta. RosettaEPR increased the fractions of correctly folded models ( [Formula: see text] <7.5Å) and models accurate at medium resolution ( [Formula: see text] <3.5Å) by 25%. The correlation of score and model quality increased from 0.42 when using no restraints to 0.51 when using bounded restraints and again to 0.62 when using RosettaEPR. This allowed for the selection of accurate models by score. After full-atom refinement, RosettaEPR yielded a 1.7Å model of T4-lysozyme, thus indicating that atomic detail models can be achieved by combining sparse EPR data with Rosetta. While these results indicate RosettaEPR's potential utility in high-resolution protein structure prediction, they are based on a single example. In order to affirm the method's general performance, it must be tested on a larger and more versatile dataset of proteins.

摘要

位点定向自旋标记电子顺磁共振(SDSL-EPR)常用于结构特征分析,尤其是对那些难以通过 X 射线晶体学和核磁共振(NMR)等技术进行分析的蛋白质。然而,由于自旋标记位置的不确定性和实验数据的稀疏性,难以获得高分辨率结构。本研究引入 RosettaEPR,旨在利用稀疏 SDSL-EPR 距离数据提高从头预测高分辨率蛋白质结构的能力。“圆锥运动”自旋标记模型被转化为基于知识的势能,该势能作为评分项被整合到 Rosetta 中。RosettaEPR 将正确折叠模型的分数( [Formula: see text] <7.5Å)和中分辨率准确模型的分数( [Formula: see text] <3.5Å)分别提高了 25%。从无约束时的 0.42 提高到有界约束时的 0.51,再提高到使用 RosettaEPR 时的 0.62,评分与模型质量的相关性增加。这使得可以通过评分来选择准确的模型。经过全原子精修后,RosettaEPR 得到了 T4 溶菌酶的 1.7Å模型,这表明通过结合稀疏 EPR 数据和 Rosetta 可以实现原子细节模型。尽管这些结果表明 RosettaEPR 在高分辨率蛋白质结构预测中的潜在应用价值,但它们仅基于单个示例。为了确认该方法的一般性能,必须在更大、更通用的蛋白质数据集上进行测试。

相似文献

引用本文的文献

2
Protein Modeling with DEER Spectroscopy.利用双电子-电子共振光谱进行蛋白质建模。
Annu Rev Biophys. 2025 May;54(1):35-57. doi: 10.1146/annurev-biophys-030524-013431. Epub 2024 Dec 17.

本文引用的文献

4
Simultaneous prediction of protein folding and docking at high resolution.高分辨率下蛋白质折叠和对接的同步预测。
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18978-83. doi: 10.1073/pnas.0904407106. Epub 2009 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验