Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106-7207, USA.
Ann Biomed Eng. 2011 May;39(5):1570-81. doi: 10.1007/s10439-010-0242-9. Epub 2011 Jan 27.
In an ovine femur model, proliferative woven bone fills critically sized defects enveloped by periosteum within 2 weeks of treatment with the one-stage bone-transport surgery. We hypothesize that mechanical loading modulates this process. Using high-definition optical strain measurements we determined prevailing periosteal strains for normal and surgically treated ovine femora subjected ex vivo to compressive loads simulating in vivo stance shifting (n = 3 per group, normal vs. treated). We determined spatial distribution of calcein green, a label for bone apposition in first the 2 weeks after surgery, in 15°, 30°, and 45° sectors of histological cross sections through the middle of the defect zone (n = 6 bones, three to four sections per bone). Finally, we correlated early bone formation to either the maximal periosteal strain or the net change in maximal periosteal strain. We found that treatment with the one-stage bone-transport surgery profoundly changes the mechanical environment of cells within the periosteum during stance shift loading. The pattern of early bone formation is repeatable within and between animals and relates significantly to the actual strain magnitude prevailing in the periosteum during stance shift loading. Interestingly, early bone apposition after the surgery correlates well to the maximal net change in strain (above circa 2000-3000 με, in tension or compression) rather than strain magnitude per se, providing further evidence that changes in cell shape may drive mechanoadaptation by progenitor cells. These important insights regarding mechanobiological factors that enhance rapid bone generation in critically sized defects can be translated to the tissue and organ scale, providing a basis for the development of best practices for clinical implementation and the definition of movement protocols to enhance the regenerative effect.
在绵羊股骨模型中,采用一期骨搬运手术治疗后 2 周内,增生的编织骨可填充被骨膜包裹的临界尺寸缺损。我们假设机械负荷会调节这一过程。我们使用高清晰度的光应变测量法,确定了正常和经手术处理的绵羊股骨在模拟体内站立转移的压缩负荷下的外植体中的主要骨膜应变(每组 3 个,正常与治疗)。我们在手术后的前 2 周,通过在组织学横切穿过缺损区中部的 15°、30°和 45°扇形区,确定了 calcein green(一种用于标记手术后 2 周内骨形成的标签)的空间分布(n = 6 个骨头,每个骨头有三到四个切片)。最后,我们将早期骨形成与最大骨膜应变或最大骨膜应变的净变化相关联。我们发现,采用一期骨搬运手术治疗后,在站立转移加载过程中,细胞的机械环境发生了深刻变化。早期骨形成的模式在动物体内和动物之间具有可重复性,并且与站立转移加载过程中骨膜中的实际应变幅度显著相关。有趣的是,手术后的早期骨形成与应变的最大净变化(约 2000-3000 με 以上,拉伸或压缩)密切相关,而不是应变幅度本身,这进一步证明了细胞形状的变化可能会通过祖细胞驱动机械适应性。这些关于增强临界尺寸缺陷中快速骨生成的机械生物学因素的重要见解可以转化为组织和器官规模,为临床实施的最佳实践的发展和运动方案的定义提供依据,以增强再生效果。