University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, Department of Physics, 1110 West Green Street, Urbana, Illinois 61801, USA.
J Theor Biol. 2011 Apr 21;275(1):93-103. doi: 10.1016/j.jtbi.2011.01.025. Epub 2011 Jan 25.
The mean fixation time of a deleterious mutant allele is studied beyond the diffusion approximation. As in Kimura's classical work [M. Kimura, Proc. Natl. Acad. Sci. USA. 77, 522 (1980)], that was motivated by the problem of fixation in the presence of amorphic or hypermorphic mutations, we consider a diallelic model at a single locus comprising a wild-type A and a mutant allele A' produced irreversibly from A at small uniform rate v. The relative fitnesses of the mutant homozygotes A'A', mutant heterozygotes A'A and wild-type homozygotes AA are 1-s, 1-h and 1, respectively, where it is assumed that v<<s. Here, we employ a WKB theory and directly treat the underlying Markov chain (formulated as a birth-death process) obeyed by the allele frequency (whose dynamics is prescribed by the Moran model). Importantly, this approach allows to accurately account for effects of large fluctuations. After a general description of the theory, we focus on the case of a deleterious mutant allele (i.e. s>0) and discuss three situations: when the mutant is (i) completely dominant (s=h); (ii) completely recessive (h=0), and (iii) semi-dominant (h=s/2). Our theoretical predictions for the mean fixation time and the quasi-stationary distribution of the mutant population in the coexistence state, are shown to be in excellent agreement with numerical simulations. Furthermore, when s is finite, we demonstrate that our results are superior to those of the diffusion theory, while the latter is shown to be an accurate approximation only when N(e)s(2)<<1, where N(e) is the effective population size.
研究了有害突变等位基因的平均固定时间,超越了扩散近似。就像金武雄(Kimura)在经典著作[M. Kimura, Proc. Natl. Acad. Sci. USA. 77, 522 (1980)]中所做的那样,该研究受到在存在无定形或超形突变时的固定问题的启发,我们考虑了一个由单个基因座上的野生型 A 和突变等位基因 A'组成的双等位基因模型,该模型A'可由 A 以小的均匀速率 v 不可逆地产生。突变纯合子 A'A'、突变杂合子 A'A 和野生型纯合子 AA 的相对适合度分别为 1-s、1-h 和 1,其中假设 v<<s。在这里,我们采用 WKB 理论并直接处理由等位基因频率(其动力学由 Moran 模型规定)所遵循的基本马尔可夫链(表示为出生-死亡过程)。重要的是,这种方法可以准确地考虑到大波动的影响。在对理论进行了一般描述之后,我们专注于有害突变等位基因的情况(即 s>0),并讨论了三种情况:当突变是(i)完全显性(s=h)时;(ii)完全隐性(h=0);(iii)半显性(h=s/2)。我们对共存状态下的平均固定时间和突变群体的准静态分布的理论预测,与数值模拟结果非常吻合。此外,当 s 为有限时,我们证明我们的结果优于扩散理论的结果,而后者仅在 N(e)s(2)<<1 时才是准确的近似值,其中 N(e)是有效种群大小。