Suppr超能文献

基于 HIV-1 逆转录酶抑制剂的虚拟筛选研究,以设计有效的先导化合物。

Virtual screening studies on HIV-1 reverse transcriptase inhibitors to design potent leads.

机构信息

Informatics, GVK Biosciences Private Limited, 37 Sterling Road, Chennai 600034, Tamil Nadu, India.

出版信息

Eur J Med Chem. 2011 Mar;46(3):851-9. doi: 10.1016/j.ejmech.2010.12.022. Epub 2011 Jan 9.

Abstract

The purpose of this study is to identify novel and potent inhibitors against HIV-1 reverse transcriptase (RT). The crystal structure of the most active ligand was converted into a feature-shaped query. This query was used to align molecules to generate statistically valid 3D-QSAR (r(2) = 0.873) and Pharmacophore models (HypoGen). The best HypoGen model consists of three Pharmacophore features (one hydrogen bond acceptor, one hydrophobic aliphatic and one ring aromatic) and further validated using known RT inhibitors. The designed novel inhibitors are further subjected to docking studies to reduce the number of false positives. We have identified and proposed some novel and potential lead molecules as reverse transcriptase inhibitors using analog and structure based studies.

摘要

本研究旨在寻找新型、有效的 HIV-1 逆转录酶(RT)抑制剂。将最活跃配体的晶体结构转化为特征形状查询。该查询用于对齐分子,以生成具有统计学意义的 3D-QSAR(r(2) = 0.873)和药效团模型(HypoGen)。最佳 HypoGen 模型由三个药效团特征(一个氢键受体、一个疏水性脂肪族和一个环状芳香族)组成,并使用已知的 RT 抑制剂进一步验证。设计的新型抑制剂进一步进行对接研究,以减少假阳性。我们通过类似物和基于结构的研究,确定并提出了一些新型的、有潜力的潜在先导分子作为逆转录酶抑制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验