Suppr超能文献

孟加拉国疟疾流行区卫星和气象资料预测适用性的比较分析。

Comparative analysis on applicability of satellite and meteorological data for prediction of malaria in endemic area in bangladesh.

机构信息

NOAA-CREST, The City College of New York, New York, NY 10031, USA.

出版信息

J Trop Med. 2010;2010:914094. doi: 10.1155/2010/914094. Epub 2011 Jan 12.

Abstract

Relationships between yearly malaria incidence and (1) climate data from weather station and (2) satellite-based vegetation health (VH) indices were investigated for prediction of malaria vector activities in Bangladesh. Correlation analysis of percent of malaria cases with Advanced Very High Resolution Radiometer- (AVHRR-) based VH indices represented by the vegetation condition index (VCI-moisture condition) and the temperature condition index (TCI-estimates thermal condition) and with rainfall, relative humidity, and temperature from ground-based meteorological stations. Results show that climate data from weather stations are poorly correlated and are not applicable to estimate prevalence in Bangladesh. The study also has shown that AVHRR-based vegetation health (VH) indices are highly applicable for malaria trend assessment and also for the estimation of the total number of malaria cases in Bangladesh for the period of 1992-2001.

摘要

研究了年度疟疾发病率与(1)气象站的气候数据和(2)基于卫星的植被健康(VH)指数之间的关系,以预测孟加拉国的疟疾媒介活动。用基于高级甚高分辨率辐射计(AVHRR)的 VH 指数(用植被状况指数(VCI-湿度状况)和温度状况指数(TCI-估计热状况)表示)与地面气象站的降雨、相对湿度和温度的相关分析代表了疟疾病例的百分比。结果表明,气象站的气候数据相关性差,不适用于估计孟加拉国的流行率。该研究还表明,基于 AVHRR 的植被健康(VH)指数非常适用于评估疟疾趋势,也适用于估计 1992-2001 年期间孟加拉国的疟疾总病例数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef6/3025368/60a062f31e49/JTM2010-914094.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验