Suppr超能文献

一种用于多模态函数全局优化的混合粒子群优化-拟牛顿法策略

A Hybrid PSO-BFGS Strategy for Global Optimization of Multimodal Functions.

作者信息

Tsang I W, Kwok James Tin-Yau

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2011 Aug;41(4):1003-14. doi: 10.1109/TSMCB.2010.2103055. Epub 2011 Jan 28.

Abstract

Particle swarm optimizer (PSO) is a powerful optimization algorithm that has been applied to a variety of problems. It can, however, suffer from premature convergence and slow convergence rate. Motivated by these two problems, a hybrid global optimization strategy combining PSOs with a modified Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is presented in this paper. The modified BFGS method is integrated into the context of the PSOs to improve the particles' local search ability. In addition, in conjunction with the territory technique, a reposition technique to maintain the diversity of particles is proposed to improve the global search ability of PSOs. One advantage of the hybrid strategy is that it can effectively find multiple local solutions or global solutions to the multimodal functions in a box-constrained space. Based on these local solutions, a reconstruction technique can be adopted to further estimate better solutions. The proposed method is compared with several recently developed optimization algorithms on a set of 20 standard benchmark problems. Experimental results demonstrate that the proposed approach can obtain high-quality solutions on multimodal function optimization problems.

摘要

粒子群优化算法(PSO)是一种强大的优化算法,已被应用于各种问题。然而,它可能会出现早熟收敛和收敛速度慢的问题。受这两个问题的启发,本文提出了一种将粒子群优化算法与改进的布罗伊登-弗莱彻-戈德法布-肖诺(BFGS)方法相结合的混合全局优化策略。将改进的BFGS方法融入粒子群优化算法的框架中,以提高粒子的局部搜索能力。此外,结合领域技术,提出了一种用于保持粒子多样性的重新定位技术,以提高粒子群优化算法的全局搜索能力。该混合策略的一个优点是,它可以在盒约束空间中有效地找到多峰函数的多个局部解或全局解。基于这些局部解,可以采用一种重构技术来进一步估计更好的解。在一组20个标准基准问题上,将所提出的方法与几种最近开发的优化算法进行了比较。实验结果表明,该方法在多峰函数优化问题上能够获得高质量的解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验