Suppr超能文献

克里金法在原子特性最优预测中的优化算法。

Optimization Algorithms in Optimal Predictions of Atomistic Properties by Kriging.

机构信息

Manchester Institute of Biotechnology (MIB) , 131 Princess Street, Manchester M1 7DN, Great Britain.

School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, Great Britain.

出版信息

J Chem Theory Comput. 2016 Apr 12;12(4):1499-513. doi: 10.1021/acs.jctc.5b00936. Epub 2016 Mar 23.

Abstract

The machine learning method kriging is an attractive tool to construct next-generation force fields. Kriging can accurately predict atomistic properties, which involves optimization of the so-called concentrated log-likelihood function (i.e., fitness function). The difficulty of this optimization problem quickly escalates in response to an increase in either the number of dimensions of the system considered or the size of the training set. In this article, we demonstrate and compare the use of two search algorithms, namely, particle swarm optimization (PSO) and differential evolution (DE), to rapidly obtain the maximum of this fitness function. The ability of these two algorithms to find a stationary point is assessed by using the first derivative of the fitness function. Finally, the converged position obtained by PSO and DE is refined through the limited-memory Broyden-Fletcher-Goldfarb-Shanno bounded (L-BFGS-B) algorithm, which belongs to the class of quasi-Newton algorithms. We show that both PSO and DE are able to come close to the stationary point, even in high-dimensional problems. They do so in a reasonable amount of time, compared to that with the Newton and quasi-Newton algorithms, regardless of the starting position in the search space of kriging hyperparameters. The refinement through L-BFGS-B is able to give the position of the maximum with whichever precision is desired.

摘要

机器学习方法克里金是构建下一代力场的一种有吸引力的工具。克里金可以准确地预测原子特性,这涉及到所谓的集中对数似然函数(即适应度函数)的优化。随着系统考虑的维度数量或训练集大小的增加,这个优化问题的难度会迅速升级。在本文中,我们演示并比较了两种搜索算法,即粒子群优化(PSO)和差分进化(DE),以快速获得该适应度函数的最大值。通过适应度函数的一阶导数来评估这两种算法找到稳定点的能力。最后,通过属于拟牛顿算法类的有限记忆布罗伊登-弗莱彻-戈尔德法布-肖纳有界(L-BFGS-B)算法对 PSO 和 DE 获得的收敛位置进行细化。我们表明,PSO 和 DE 都能够接近稳定点,即使在高维问题中也是如此。与牛顿和拟牛顿算法相比,它们在合理的时间内做到了这一点,而不管克里金超参数搜索空间中的起始位置如何。通过 L-BFGS-B 的细化能够以所需的任何精度给出最大值的位置。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验