Radiation Biophysics Group, Department of Oncology Pathology, Karolinska Institutet, Stockholm, Sweden.
Int J Radiat Biol. 2011 Feb;87(2):141-60. doi: 10.3109/09553002.2010.518204.
To investigate physical and biophysical properties of proton tracks 1 keV-300 MeV using Monte Carlo track structure methods.
We present model calculations for cross sections and methods for simulations of full-slowing-down proton tracks. Protons and electrons were followed interaction-by-interaction to cut-off energies, considering elastic scattering, ionisation, excitation, and charge-transfer.
Model calculations are presented for singly differential and total cross sections, and path lengths and stopping powers as a measure of the code evaluation. Depth-dose distributions for 160 MeV protons are compared with experimental data. Frequencies of energy loss by electron interactions increase from ∼ 3% for 10 keV to ∼ 77% for 300 MeV protons, and electrons deposit >70% of the dose in 160 MeV tracks. From microdosimetry calculations, 1 MeV protons were found to be more effective than 5-300 MeV in energy depositions greater than 25, 50, and 500 eV in cylinders of diameters and lengths 2, 10, and 100 nm, respectively. For lower-energy depositions, higher-energy protons are more effective. Decreasing the target size leads to the reduction of frequency- and dose-mean lineal energies for protons <1 MeV, and conversely for higher-energy protons.
Descriptions of proton tracks at molecular levels facilitate investigations of track properties, energy loss, and microdosimetric parameters for radiation biophysics, radiation therapy, and space radiation research.
使用蒙特卡罗径迹结构方法研究 1 keV-300 MeV 质子径迹的物理和生物物理性质。
我们提出了用于截面的模型计算以及用于模拟全慢化质子径迹的方法。考虑弹性散射、电离、激发和电荷转移,质子和电子被逐次相互作用到截止能量。
提出了用于单微分和总截面以及路径长度和阻止功率的模型计算,作为代码评估的量度。将 160 MeV 质子的深度剂量分布与实验数据进行了比较。电子相互作用能量损失的频率从 10 keV 时的约 3%增加到 300 MeV 时的约 77%,并且电子在 160 MeV 径迹中沉积了超过 70%的剂量。从微剂量学计算中发现,1 MeV 质子在大于 25、50 和 500 eV 的能量沉积时比 5-300 MeV 更有效,分别在直径和长度为 2、10 和 100nm 的圆柱体中。对于较低的能量沉积,较高能量的质子更有效。减小靶标尺寸会降低小于 1 MeV 的质子的频率和剂量平均线性能量,反之亦然,对于较高能量的质子也是如此。
在分子水平上描述质子径迹有助于研究辐射生物物理学、放射治疗和空间辐射研究中的径迹特性、能量损失和微剂量学参数。