Suppr超能文献

尽量减少使用不均衡分配的最小化方法。

Minimize the use of minimization with unequal allocation.

作者信息

Proschan Michael, Brittain Erica, Kammerman Lisa

机构信息

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, 6700A Rockledge Drive, Room 5140, Bethesda, Maryland 20892-7609, USA.

出版信息

Biometrics. 2011 Sep;67(3):1135-41. doi: 10.1111/j.1541-0420.2010.01545.x. Epub 2011 Jan 31.

Abstract

Minimization as an alternative to randomization is gaining popularity for small clinical trials. In response to critics' questions about the proper analysis of such a trial, proponents have argued that a rerandomization approach, akin to a permutation test with conventional randomization, can be used. However, they add that this computationally intensive approach is not necessary because its results are very similar to those of a t-test or test of proportions unless the sample size is very small. We show that minimization applied with unequal allocation causes problems that challenge this conventional wisdom.

摘要

作为随机化的替代方法,最小化法在小型临床试验中越来越受欢迎。针对批评者对这类试验正确分析方法的质疑,支持者认为可以采用一种重新随机化方法,类似于传统随机化的排列检验。然而,他们补充说,这种计算量很大的方法并非必要,因为除非样本量非常小,其结果与t检验或比例检验的结果非常相似。我们表明,采用不等分配的最小化法会引发一些问题,对这种传统观念构成挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验