Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
Stat Med. 2012 Dec 20;31(29):3858-73. doi: 10.1002/sim.5448. Epub 2012 Jul 5.
Randomization models are useful in supporting the validity of linear model analyses applied to data from a clinical trial that employed randomization via permuted blocks. Here, a randomization model for clinical trials data with arbitrary randomization methodology is developed, with treatment effect estimators and standard error estimators valid from a randomization perspective. A central limit theorem for the treatment effect estimator is also derived. As with permuted-blocks randomization, a typical linear model analysis provides results similar to the randomization model results when, roughly, unit effects display no pattern over time. A key requirement for the randomization inference is that the unconditional probability that any patient receives active treatment is constant across patients; when this probability condition is violated, the treatment effect estimator is biased from a randomization perspective. Most randomization methods for balanced, 1 to 1, treatment allocation satisfy this condition. However, many dynamic randomization methods for planned unbalanced treatment allocation, like 2 to 1, do not satisfy this constant probability condition, and these methods should be avoided.
随机化模型在支持通过置换块随机化的临床试验数据的线性模型分析的有效性方面非常有用。这里,开发了一种具有任意随机化方法的临床试验数据的随机化模型,具有从随机化角度有效的治疗效果估计量和标准误差估计量。还推导出了治疗效果估计量的中心极限定理。与置换块随机化一样,当单位效应大致随时间没有模式时,典型的线性模型分析提供的结果类似于随机化模型的结果。随机化推断的一个关键要求是任何患者接受积极治疗的无条件概率在患者之间保持不变;当违反此概率条件时,从随机化角度来看,治疗效果估计量存在偏差。对于平衡、1 对 1 的治疗分配的大多数随机化方法都满足此条件。但是,许多用于计划非平衡治疗分配的动态随机化方法(如 2 对 1)不满足此常数概率条件,应避免使用这些方法。