Suppr超能文献

微循环中的氧梯度。

Oxygen gradients in the microcirculation.

机构信息

Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA.

出版信息

Acta Physiol (Oxf). 2011 Jul;202(3):311-22. doi: 10.1111/j.1748-1716.2010.02232.x. Epub 2011 Feb 1.

Abstract

Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO(2) gradient and that the permeability for oxygen along the intervening pathway is sufficient.

摘要

在上个世纪早期,August Krogh 开展了一系列开创性的研究,旨在理解组织代谢与心血管系统供氧机制之间的关系,以满足这些需求。Krogh 认识到氧气是通过被动扩散从血液输送到组织的,而氧气交换最有可能发生的部位是毛细血管网络。对组织耗氧量和扩散系数的研究,以及对各种组织中毛细血管的解剖学研究,使他提出了一个从单个毛细血管供氧的扩散模型。在这项工作发表 50 年后,开发出了新的方法,可以直接测量微血管内和周围的氧气。这些直接测量结果证实了 Krogh 的预测,并扩展了他的想法,使我们目前对微循环中的氧合作用有了更深入的理解。本文回顾了过去 40 年的发展,包括对小动脉、毛细血管、小静脉、微血管壁和周围组织中氧梯度的研究。这些测量是通过开发和使用新方法来研究微循环中的氧气而成为可能的,因此提到了氧微电极、血红蛋白的微区分光光度法和磷光猝灭显微镜。从微循环的角度来看,我们对氧气输送的理解已经从考虑毛细血管和组织中的氧气梯度发展到认识到,在存在足够大的 PO2 梯度并且氧气沿着中间路径的通透性足够的情况下,氧气有能力从任何微血管扩散到另一个位置。

相似文献

1
Oxygen gradients in the microcirculation.
Acta Physiol (Oxf). 2011 Jul;202(3):311-22. doi: 10.1111/j.1748-1716.2010.02232.x. Epub 2011 Feb 1.
2
3
Influence of microvascular architecture on oxygen exchange in skeletal muscle.
Microcirculation. 1995 May;2(1):1-18. doi: 10.3109/10739689509146755.
4
Measurement of oxygen in the microcirculation using phosphorescence quenching microscopy.
Adv Exp Med Biol. 2010;662:157-62. doi: 10.1007/978-1-4419-1241-1_22.
5
Longitudinal and radial gradients of PO(2) in the hamster cheek pouch microcirculation.
Microcirculation. 2008 Apr;15(3):215-24. doi: 10.1080/10739680701616175.
6
Arterioles' contribution to oxygen supply to the skeletal muscles at rest.
Eur J Appl Physiol. 2006 Jun;97(3):327-31. doi: 10.1007/s00421-006-0200-2. Epub 2006 Apr 25.
7
Oxygen supply to contracting skeletal muscle at the microcirculatory level: diffusion vs. convection.
Acta Physiol Scand. 2000 Apr;168(4):593-602. doi: 10.1046/j.1365-201x.2000.00710.x.
8
August Krogh's theory of muscle microvascular control and oxygen delivery: a paradigm shift based on new data.
J Physiol. 2020 Oct;598(20):4473-4507. doi: 10.1113/JP279223. Epub 2020 Sep 12.
9
Dynamics of muscle microcirculatory and blood-myocyte O(2) flux during contractions.
Acta Physiol (Oxf). 2011 Jul;202(3):293-310. doi: 10.1111/j.1748-1716.2010.02246.x. Epub 2011 Mar 1.
10
Microvascular oxygen tension in the rat mesentery.
Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H21-8. doi: 10.1152/ajpheart.00861.2007. Epub 2007 Oct 19.

引用本文的文献

2
Characterization of Sublingual Microvascular Tortuosity in Steady-State Physiology and Septic Shock.
Biomedicines. 2025 Mar 11;13(3):691. doi: 10.3390/biomedicines13030691.
4
Capillary-Mitochondrial Oxygen Transport in Muscle: Paradigm Shifts.
Function (Oxf). 2023 Mar 16;4(3):zqad013. doi: 10.1093/function/zqad013. eCollection 2023.
5
Adaptive spectroscopic visible-light optical coherence tomography for clinical retinal oximetry.
Commun Med (Lond). 2023 Apr 24;3(1):57. doi: 10.1038/s43856-023-00288-8.
6
The potential therapeutic benefits of low frequency haemodynamic oscillations.
J Physiol. 2022 Sep;600(17):3905-3919. doi: 10.1113/JP282605. Epub 2022 Aug 18.
7
Bioreactor design and validation for manufacturing strategies in tissue engineering.
Biodes Manuf. 2022 Jan;5(1):43-63. doi: 10.1007/s42242-021-00154-3. Epub 2021 Jul 19.
9
Oxygen: viral friend or foe?
Virol J. 2020 Jul 27;17(1):115. doi: 10.1186/s12985-020-01374-2.
10
Simulation of oxygen transport and estimation of tissue perfusion in extensive microvascular networks: Application to cerebral cortex.
J Cereb Blood Flow Metab. 2021 Mar;41(3):656-669. doi: 10.1177/0271678X20927100. Epub 2020 Jun 5.

本文引用的文献

1
Role of Microvessels in Oxygen Supply to Tissue.
News Physiol Sci. 1994 Jun;9(3):119-123. doi: 10.1152/physiologyonline.1994.9.3.119.
2
Phosphorescence quenching microrespirometry of skeletal muscle in situ.
Am J Physiol Heart Circ Physiol. 2011 Jan;300(1):H135-43. doi: 10.1152/ajpheart.00626.2010. Epub 2010 Oct 22.
3
Defects in oxygen supply to skeletal muscle of prediabetic ZDF rats.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1661-70. doi: 10.1152/ajpheart.01239.2009. Epub 2010 Mar 5.
4
Experimental and theoretical studies of oxygen gradients in rat pial microvessels.
J Cereb Blood Flow Metab. 2008 Sep;28(9):1597-604. doi: 10.1038/jcbfm.2008.51. Epub 2008 May 28.
5
Longitudinal and radial gradients of PO(2) in the hamster cheek pouch microcirculation.
Microcirculation. 2008 Apr;15(3):215-24. doi: 10.1080/10739680701616175.
6
PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification.
Am J Physiol Heart Circ Physiol. 2008 Jun;294(6):H2905-16. doi: 10.1152/ajpheart.01347.2007. Epub 2008 Mar 28.
7
PO2 profiles near arterioles and tissue oxygen consumption in rat mesentery.
Am J Physiol Heart Circ Physiol. 2007 Aug;293(2):H1097-106. doi: 10.1152/ajpheart.00077.2007. Epub 2007 May 4.
9
The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion.
J Physiol. 1919 May 20;52(6):391-408. doi: 10.1113/jphysiol.1919.sp001838.
10
Effect of oxygen consumption by measuring method on PO2 transients associated with the passage of erythrocytes in capillaries of rat mesentery.
Am J Physiol Heart Circ Physiol. 2005 Oct;289(4):H1777; author reply H1778-9. doi: 10.1152/ajpheart.00503.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验