Suppr超能文献

两域蛋白开关中互斥折叠的分子模拟。

Molecular simulations of mutually exclusive folding in a two-domain protein switch.

机构信息

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania.

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania.

出版信息

Biophys J. 2011 Feb 2;100(3):756-764. doi: 10.1016/j.bpj.2010.12.3710.

Abstract

A major challenge with testing designs of protein conformational switches is the need for experimental probes that can independently monitor their individual protein domains. One way to circumvent this issue is to use a molecular simulation approach in which each domain can be directly observed. Here we report what we believe to be the first molecular simulations of mutually exclusive folding in an engineered two-domain protein switch, providing a direct view of how folding of one protein drives unfolding of the other in a barnase-ubiquitin fusion protein. These simulations successfully capture the experimental effects of interdomain linker length and ligand binding on the extent of unfolding in the less stable domain. In addition, the effect of linker length on the potential for oligomerization, which eliminates switch activity, is in qualitative agreement with analytical ultracentrifugation experiments. We also perform what we believe to be the first study of protein unfolding via progressive localized compression. Finally, we are able to explore the kinetics of mutually exclusive folding by determining the effect of linker length on rates of unfolding and refolding of each protein domain. Our results demonstrate that molecular simulations can provide seemingly novel biological insights on the behavior of individual protein domains, thereby aiding in the rational design of bifunctional switches.

摘要

测试蛋白质构象开关设计的一个主要挑战是需要能够独立监测其各个蛋白质结构域的实验探针。一种解决此问题的方法是使用分子模拟方法,其中可以直接观察到每个结构域。在这里,我们报告了我们认为的第一个在工程双域蛋白质开关中进行互斥折叠的分子模拟,直接观察到一个蛋白质的折叠如何驱动另一个蛋白质的展开,这是在 barnase-ubiquitin 融合蛋白中实现的。这些模拟成功地捕获了实验中连接子长度和配体结合对不稳定结构域展开程度的影响。此外,连接子长度对寡聚化可能性的影响(这会消除开关活性)与分析超速离心实验定性一致。我们还进行了我们认为的首次通过渐进局部压缩的蛋白质展开研究。最后,我们能够通过确定连接子长度对每个蛋白质结构域的展开和折叠速率的影响来探索互斥折叠的动力学。我们的结果表明,分子模拟可以为单个蛋白质结构域的行为提供看似新颖的生物学见解,从而有助于理性设计双功能开关。

相似文献

1
Molecular simulations of mutually exclusive folding in a two-domain protein switch.
Biophys J. 2011 Feb 2;100(3):756-764. doi: 10.1016/j.bpj.2010.12.3710.
2
Effect of interdomain linker length on an antagonistic folding-unfolding equilibrium between two protein domains.
J Mol Biol. 2009 Feb 27;386(3):854-68. doi: 10.1016/j.jmb.2008.10.090. Epub 2008 Nov 8.
5
Modular enzyme design: regulation by mutually exclusive protein folding.
J Mol Biol. 2006 Apr 7;357(4):1058-62. doi: 10.1016/j.jmb.2006.01.073. Epub 2006 Feb 6.
6
Thermodynamic analysis of an antagonistic folding-unfolding equilibrium between two protein domains.
J Mol Biol. 2007 Aug 10;371(2):308-16. doi: 10.1016/j.jmb.2007.05.077. Epub 2007 Jun 2.
7
Equilibrium and kinetic studies of protein cooperativity using urea-induced folding/unfolding of a Ubq-UIM fusion protein.
Biophys Chem. 2011 Nov;159(1):58-65. doi: 10.1016/j.bpc.2011.05.004. Epub 2011 May 13.
8
Engineering domain-swapped binding interfaces by mutually exclusive folding.
J Mol Biol. 2012 Mar 2;416(4):495-502. doi: 10.1016/j.jmb.2011.12.050. Epub 2012 Jan 8.
9
Allosteric switching by mutually exclusive folding of protein domains.
J Mol Biol. 2003 Sep 19;332(3):529-36. doi: 10.1016/s0022-2836(03)00925-2.

引用本文的文献

1
Large enhancement of response times of a protein conformational switch by computational design.
Nat Commun. 2018 Mar 9;9(1):1013. doi: 10.1038/s41467-018-03228-6.
3
Engineered Domain Swapping as an On/Off Switch for Protein Function.
Chem Biol. 2015 Oct 22;22(10):1384-93. doi: 10.1016/j.chembiol.2015.09.007.
4
Insertion of a xylanase in xylose binding protein results in a xylose-stimulated xylanase.
Biotechnol Biofuels. 2015 Aug 15;8:118. doi: 10.1186/s13068-015-0293-0. eCollection 2015.
5
Nascent SecM chain outside the ribosome reinforces translation arrest.
PLoS One. 2015 Mar 25;10(3):e0122017. doi: 10.1371/journal.pone.0122017. eCollection 2015.
6
Coarse-grained simulations of protein-protein association: an energy landscape perspective.
Biophys J. 2012 Aug 22;103(4):837-45. doi: 10.1016/j.bpj.2012.07.013.
7
Engineering domain-swapped binding interfaces by mutually exclusive folding.
J Mol Biol. 2012 Mar 2;416(4):495-502. doi: 10.1016/j.jmb.2011.12.050. Epub 2012 Jan 8.

本文引用的文献

1
Striking Effects of Hydrodynamic Interactions on the Simulated Diffusion and Folding of Proteins.
J Chem Theory Comput. 2009 Feb 10;5(2):242-56. doi: 10.1021/ct800499p.
2
On the mechanism of protein fold-switching by a molecular sensor.
Proteins. 2010 Dec;78(16):3260-9. doi: 10.1002/prot.22833.
3
Engineering an artificial zymogen by alternate frame protein folding.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2824-9. doi: 10.1073/pnas.0907668107. Epub 2010 Jan 26.
4
Protein unfolding with a steric trap.
J Am Chem Soc. 2009 Oct 7;131(39):13914-5. doi: 10.1021/ja905725n.
5
Direct observation of tug-of-war during the folding of a mutually exclusive protein.
J Am Chem Soc. 2009 Sep 23;131(37):13347-54. doi: 10.1021/ja903480j.
6
Generation of new protein functions by nonhomologous combinations and rearrangements of domains and modules.
Curr Opin Biotechnol. 2009 Aug;20(4):398-404. doi: 10.1016/j.copbio.2009.07.007. Epub 2009 Aug 21.
7
Designing switchable enzymes.
Curr Opin Struct Biol. 2009 Aug;19(4):442-8. doi: 10.1016/j.sbi.2009.04.007. Epub 2009 May 25.
8
Structural and thermodynamic analysis of a conformationally strained circular permutant of barnase.
Biochemistry. 2009 Apr 21;48(15):3497-507. doi: 10.1021/bi900039e.
9
Effect of interdomain linker length on an antagonistic folding-unfolding equilibrium between two protein domains.
J Mol Biol. 2009 Feb 27;386(3):854-68. doi: 10.1016/j.jmb.2008.10.090. Epub 2008 Nov 8.
10
A Ca2+-sensing molecular switch based on alternate frame protein folding.
ACS Chem Biol. 2008 Nov 21;3(11):723-32. doi: 10.1021/cb800177f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验