Suppr超能文献

工程化结构域交换作为蛋白质功能的开/关开关

Engineered Domain Swapping as an On/Off Switch for Protein Function.

作者信息

Ha Jeung-Hoi, Karchin Joshua M, Walker-Kopp Nancy, Castañeda Carlos A, Loh Stewart N

机构信息

Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.

Departments of Biology and Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA.

出版信息

Chem Biol. 2015 Oct 22;22(10):1384-93. doi: 10.1016/j.chembiol.2015.09.007.

Abstract

Domain swapping occurs when identical proteins exchange segments in reciprocal fashion. Natural swapping mechanisms remain poorly understood, and engineered swapping has the potential for creating self-assembling biomaterials that encode for emergent functions. We demonstrate that induced swapping can be used to regulate the function of a target protein. Swapping is triggered by inserting a "lever" protein (ubiquitin) into one of four loops of the ribose binding protein (RBP) target. The lever splits the target, forcing RBP to refold in trans to generate swapped oligomers. Identical RBP-ubiquitin fusions form homo-swapped complexes with the ubiquitin domain acting as the hinge. Surprisingly, some pairs of non-identical fusions swap more efficiently with each other than they do with themselves. Nuclear magnetic resonance experiments reveal that the hinge of these hetero-swapped complexes maps to a region of RBP distant from both ubiquitins. This design is expected to be applicable to other proteins to convert them into functional switches.

摘要

当相同的蛋白质以相互交换的方式交换片段时,就会发生结构域交换。天然的交换机制仍知之甚少,而工程化交换有潜力创造出编码新功能的自组装生物材料。我们证明诱导交换可用于调节靶蛋白的功能。通过将“杠杆”蛋白(泛素)插入核糖结合蛋白(RBP)靶标的四个环之一中来触发交换。杠杆将靶标分开,迫使RBP反式折叠以产生交换的寡聚体。相同的RBP-泛素融合体形成同型交换复合物,其中泛素结构域充当铰链。令人惊讶的是,一些非相同融合体对彼此之间的交换比它们自身之间的交换更有效。核磁共振实验表明,这些异源交换复合物的铰链映射到RBP中远离两个泛素的区域。预计这种设计适用于其他蛋白质,将它们转化为功能开关。

相似文献

1
Engineered Domain Swapping as an On/Off Switch for Protein Function.
Chem Biol. 2015 Oct 22;22(10):1384-93. doi: 10.1016/j.chembiol.2015.09.007.
2
3D domain swapping: as domains continue to swap.
Protein Sci. 2002 Jun;11(6):1285-99. doi: 10.1110/ps.0201402.
3
Engineering domain-swapped binding interfaces by mutually exclusive folding.
J Mol Biol. 2012 Mar 2;416(4):495-502. doi: 10.1016/j.jmb.2011.12.050. Epub 2012 Jan 8.
4
Amino-acid composition after loop deletion drives domain swapping.
Protein Sci. 2017 Oct;26(10):1994-2002. doi: 10.1002/pro.3237. Epub 2017 Aug 30.
6
Three-dimensional domain swapping in the protein structure space.
Proteins. 2012 Jun;80(6):1610-9. doi: 10.1002/prot.24055. Epub 2012 Mar 13.
7
A new mutant of bovine seminal ribonuclease with a reversed swapping propensity.
Biochemistry. 2007 Feb 27;46(8):2227-32. doi: 10.1021/bi0613630. Epub 2007 Feb 1.
8
Rational Design of Domain-Swapping-Based c-Type Cytochrome Heterodimers by Using Chimeric Proteins.
Chembiochem. 2017 Sep 5;18(17):1712-1715. doi: 10.1002/cbic.201700219. Epub 2017 Jul 21.
10
A Simple Model of Protein Domain Swapping in Crowded Cellular Environments.
Biophys J. 2016 Jun 7;110(11):2367-2376. doi: 10.1016/j.bpj.2016.04.033.

引用本文的文献

1
Insights into mechanisms and significance of domain swapping from emerging examples in the Mog1p/PsbP-like fold.
Biochem Biophys Res Commun. 2025 Apr 1;755:151570. doi: 10.1016/j.bbrc.2025.151570. Epub 2025 Mar 1.
2
Domain swapping: a mathematical model for quantitative assessment of structural effects.
FEBS Open Bio. 2024 Dec;14(12):2006-2025. doi: 10.1002/2211-5463.13911. Epub 2024 Oct 6.
3
Enhancing response of a protein conformational switch by using two disordered ligand binding domains.
Front Mol Biosci. 2023 Mar 2;10:1114756. doi: 10.3389/fmolb.2023.1114756. eCollection 2023.
4
Strategies for Conditional Regulation of Proteins.
JACS Au. 2023 Jan 26;3(2):344-357. doi: 10.1021/jacsau.2c00654. eCollection 2023 Feb 27.
5
Engineering protein and DNA tools for creating DNA-dependent protein switches.
Methods Enzymol. 2022;675:1-32. doi: 10.1016/bs.mie.2022.07.002. Epub 2022 Aug 23.
7
Toward Microbial Recycling and Upcycling of Plastics: Prospects and Challenges.
Front Microbiol. 2022 Mar 23;13:821629. doi: 10.3389/fmicb.2022.821629. eCollection 2022.
8
Protein Assembly by Design.
Chem Rev. 2021 Nov 24;121(22):13701-13796. doi: 10.1021/acs.chemrev.1c00308. Epub 2021 Aug 18.
9
Testing the length limit of loop grafting in a helical repeat protein.
Curr Res Struct Biol. 2020 Dec 8;3:30-40. doi: 10.1016/j.crstbi.2020.12.002. eCollection 2021.

本文引用的文献

1
Optical control of protein-protein interactions via blue light-induced domain swapping.
Biochemistry. 2014 Aug 5;53(30):5008-16. doi: 10.1021/bi500622x. Epub 2014 Jul 16.
2
ArchDB 2014: structural classification of loops in proteins.
Nucleic Acids Res. 2014 Jan;42(Database issue):D315-9. doi: 10.1093/nar/gkt1189. Epub 2013 Nov 21.
3
Three-dimensional domain swapping and supramolecular protein assembly: insights from the X-ray structure of a dimeric swapped variant of human pancreatic RNase.
Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):2116-23. doi: 10.1107/S0907444913020507. Epub 2013 Sep 20.
7
Implications of 3D domain swapping for protein folding, misfolding and function.
Adv Exp Med Biol. 2012;747:137-52. doi: 10.1007/978-1-4614-3229-6_9.
8
Domain swapping and amyloid fibril conformation.
Prion. 2012 Jul 1;6(3):211-6. doi: 10.4161/pri.18987.
9
Three-dimensional domain swapping in the protein structure space.
Proteins. 2012 Jun;80(6):1610-9. doi: 10.1002/prot.24055. Epub 2012 Mar 13.
10
Engineering domain-swapped binding interfaces by mutually exclusive folding.
J Mol Biol. 2012 Mar 2;416(4):495-502. doi: 10.1016/j.jmb.2011.12.050. Epub 2012 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验