Suppr超能文献

基于表面的解剖形状建模的局部线性测地度量嵌入(LLDME)。

Locally Linear Diffeomorphic Metric Embedding (LLDME) for surface-based anatomical shape modeling.

机构信息

Division of Bioengineering, National University of Singapore, Singapore, Singapore.

出版信息

Neuroimage. 2011 May 1;56(1):149-61. doi: 10.1016/j.neuroimage.2011.01.069. Epub 2011 Jan 31.

Abstract

This paper presents the algorithm, Locally Linear Diffeomorphic Metric Embedding (LLDME), for constructing efficient and compact representations of surface-based brain shapes whose variations are characterized using Large Deformation Diffeomorphic Metric Mapping (LDDMM). Our hypothesis is that the shape variations in the infinite-dimensional diffeomorphic metric space can be captured by a low-dimensional space. To do so, traditional Locally Linear Embedding (LLE) that reconstructs a data point from its neighbors in Euclidean space is extended to LLDME that requires interpolating a shape from its neighbors in the infinite-dimensional diffeomorphic metric space. This is made possible through the conservation law of momentum derived from LDDMM. It indicates that initial momentum, a linear transformation of the initial velocity of diffeomorphic flows, at a fixed template shape determines the geodesic connecting the template to a subject's shape in the diffeomorphic metric space and becomes the shape signature of an individual subject. This leads to the compact linear representation of the nonlinear diffeomorphisms in terms of the initial momentum. Since the initial momentum is in a linear space, a shape can be approximated by a linear combination of its neighbors in the diffeomorphic metric space. In addition, we provide efficient computations for the metric distance between two shapes through the first order approximation of the geodesic using the initial momentum as well as for the reconstruction of a shape given its low-dimensional Euclidean coordinates using the geodesic shooting with the initial momentum as the initial condition. Experiments are performed on the hippocampal shapes of 302 normal subjects across the whole life span (18-94years). Compared with Principal Component Analysis and ISOMAP, LLDME provides the most compact and efficient representation of the age-related hippocampal shapes. Even though the hippocampal volumes among young adults are as variable as those in older adults, LLDME disentangles the hippocampal local shape variation from the hippocampal size and thus reveals the nonlinear relationship of the hippocampal morphometry with age.

摘要

本文提出了一种算法,即局部线性测地嵌入(LLDME),用于构建基于表面的大脑形状的高效紧凑表示,其变化使用大变形测地同胚映射(LDDMM)进行特征化。我们的假设是,在无限维测地度量空间中的形状变化可以通过低维空间来捕捉。为此,传统的局部线性嵌入(LLE),它从欧几里得空间中的邻居重建一个数据点,被扩展到 LLDME,它需要从无限维测地度量空间中的邻居中插值一个形状。这是通过从 LDDMM 推导出的动量守恒定律来实现的。它表明,在固定模板形状处初始动量,即测地流初始速度的线性变换,决定了连接模板和对象在测地度量空间中的形状的测地线,并成为个体对象的形状特征。这导致了初始动量的非线性测地的紧凑线性表示。由于初始动量在一个线性空间中,所以一个形状可以通过在测地度量空间中其邻居的线性组合来近似。此外,我们通过使用初始动量对测地线进行一阶近似,以及通过使用初始动量作为初始条件进行测地线射击来重建形状,提供了两种形状之间的度量距离的有效计算。实验是在 302 名正常受试者的整个生命周期(18-94 岁)的海马形状上进行的。与主成分分析和 ISOMAP 相比,LLDME 提供了最紧凑和高效的与年龄相关的海马形状表示。尽管年轻成年人的海马体体积与老年人一样多变,但 LLDME 可以从海马体大小中分离出海马体的局部形状变化,从而揭示了海马体形态与年龄的非线性关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验