Tward Daniel J, Miller Michael I
Center for Imaging Science, Department of Biomedical Engineering, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States.
Front Neurosci. 2017 Oct 18;11:577. doi: 10.3389/fnins.2017.00577. eCollection 2017.
In this work we devise a strategy for discrete coding of anatomical form as described by a Bayesian prior model, quantifying the entropy of this representation as a function of code rate (number of bits), and its relationship geometric accuracy at clinically relevant scales. We study the shape of subcortical gray matter structures in the human brain through diffeomorphic transformations that relate them to a template, using data from the Alzheimer's Disease Neuroimaging Initiative to train a multivariate Gaussian prior model. We find that the at 1 mm accuracy all subcortical structures can be described with less than 35 bits, and at 1.5 mm error all structures can be described with less than 12 bits. This work represents a first step towards quantifying the amount of information ordering a neuroimaging study can provide about disease status.
在这项工作中,我们设计了一种策略,用于对贝叶斯先验模型所描述的解剖形态进行离散编码,将这种表示的熵量化为码率(比特数)的函数,以及其在临床相关尺度上与几何精度的关系。我们通过将人类大脑中的皮质下灰质结构与模板相关联的微分同胚变换来研究其形状,使用来自阿尔茨海默病神经成像计划的数据来训练多元高斯先验模型。我们发现,在1毫米精度下,所有皮质下结构都可以用少于35比特来描述,在1.5毫米误差下,所有结构都可以用少于12比特来描述。这项工作代表了朝着量化神经成像研究可以提供的关于疾病状态的信息量迈出的第一步。