Suppr超能文献

使用神经网络进行非线性模型识别和自适应模型预测控制。

Nonlinear model identification and adaptive model predictive control using neural networks.

机构信息

Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

出版信息

ISA Trans. 2011 Apr;50(2):177-94. doi: 10.1016/j.isatra.2010.12.007. Epub 2011 Feb 1.

Abstract

This paper presents two new adaptive model predictive control algorithms, both consisting of an on-line process identification part and a predictive control part. Both parts are executed at each sampling instant. The predictive control part of the first algorithm is the Nonlinear Model Predictive Control strategy and the control part of the second algorithm is the Generalized Predictive Control strategy. In the identification parts of both algorithms the process model is approximated by a series-parallel neural network structure which is trained by a recursive least squares (ARLS) method. The two control algorithms have been applied to: 1) the temperature control of a fluidized bed furnace reactor (FBFR) of a pilot plant and 2) the auto-pilot control of an F-16 aircraft. The training and validation data of the neural network are obtained from the open-loop simulation of the FBFR and the nonlinear F-16 aircraft models. The identification and control simulation results show that the first algorithm outperforms the second one at the expense of extra computation time.

摘要

本文提出了两种新的自适应模型预测控制算法,都由在线过程辨识部分和预测控制部分组成。两个部分都在每个采样时刻执行。第一个算法的预测控制部分是非线性模型预测控制策略,第二个算法的控制部分是广义预测控制策略。在两个算法的辨识部分,过程模型由一个串联-并联神经网络结构近似,该结构由递归最小二乘(ARLS)方法训练。这两种控制算法已经应用于:1)中试流化床炉反应器(FBFR)的温度控制,2)F-16 飞机的自动驾驶控制。神经网络的训练和验证数据是从 FBFR 的开环模拟和非线性 F-16 飞机模型中获得的。识别和控制仿真结果表明,第一个算法优于第二个算法,但代价是额外的计算时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验