Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
J Biol Chem. 2011 Apr 1;286(13):11427-33. doi: 10.1074/jbc.M110.188797. Epub 2011 Jan 31.
Notch signaling is active in many sites, and its diverse activities must require tissue-specific intermediaries, which are largely unknown. In the intestinal epithelium, Notch promotes crypt cell proliferation and inhibits goblet cell differentiation. Pharmacologic studies suggest that the latter effect occurs through the transcription factor Math1/Atoh1, which specifies all intestinal secretory cells. We tested this hypothesis using mouse mutants. Genetic loss of the Notch effector RBP-Jκ alone increases all intestinal secretory lineages, with variation between proximal and distal gut segments. This secretory cell excess observed with RBP-Jκ loss was blocked in the absence of Math1 in RBP-Jκ(Fl/Fl);Math1(Fl/Fl);Villin-Cre((ER-T2)) mice. Loss of both factors also restored progenitor replication, proving that Math1 is epistatic to Notch signaling in both secretory cell differentiation and crypt cell proliferation. Investigating mechanisms downstream of Math1, we found that expression of the known Notch effector protein Hes1 was predictably lost in RBP-Jκ(-/-) mice but surprisingly recovered in RBP-Jκ;Math1 compound conditional mutants. Furthermore, the cell cycle inhibitors p27(Kip1) and p57(Kip2) were selectively overexpressed in duodenal and ileal crypts, respectively, in RBP-Jκ-deficient mice. Regional activation of these products was completely abrogated in the absence of Math1. Thus, all intestinal Notch effects channel through the tissue-restricted factor Math1, which promotes secretory differentiation and cell cycle exit by regionally distinct mechanisms. Our data further suggest that, besides transmitting Notch signals, the transcription factor Hes1 acts downstream of Math1 to regulate expression of cell cycle inhibitors and intestinal crypt cell replication.
Notch 信号在许多部位都很活跃,其多样化的活动必须需要组织特异性的中介物,而这些中介物在很大程度上是未知的。在肠道上皮中,Notch 促进隐窝细胞增殖并抑制杯状细胞分化。药理学研究表明,后一种效应是通过转录因子 Math1/Atoh1 发生的,Math1/Atoh1 特异性指定所有肠道分泌细胞。我们使用小鼠突变体测试了这个假设。单独遗传缺失 Notch 效应因子 RBP-Jκ 会增加所有肠道分泌谱系,近端和远端肠道段之间存在差异。在 RBP-Jκ(Fl/Fl);Math1(Fl/Fl);Villin-Cre((ER-T2)) 小鼠中,Math1 的缺失阻断了由于 RBP-Jκ 缺失而观察到的这种分泌细胞过剩。这两种因子的缺失也恢复了祖细胞的复制,证明了 Math1 在肠道分泌细胞分化和隐窝细胞增殖中对 Notch 信号具有上位性。在 Math1 的下游机制的研究中,我们发现已知的 Notch 效应蛋白 Hes1 的表达在 RBP-Jκ(-/-) 小鼠中可预测地丢失,但在 RBP-Jκ;Math1 复合条件性突变体中出人意料地恢复。此外,细胞周期抑制剂 p27(Kip1)和 p57(Kip2)在 RBP-Jκ 缺陷型小鼠的十二指肠和回肠隐窝中分别选择性过表达。在没有 Math1 的情况下,这些产物的区域激活完全被阻断。因此,所有肠道 Notch 效应都通过组织特异性因子 Math1 进行传导,Math1 通过区域不同的机制促进分泌分化和细胞周期退出。我们的数据进一步表明,除了传递 Notch 信号外,转录因子 Hes1 还作为 Math1 的下游因子发挥作用,以调节细胞周期抑制剂和肠道隐窝细胞复制的表达。