Pashos Alison R S, Meyer Anne R, Bussey-Sutton Cameron, O'Connor Erin S, Coradin Mariel, Coulombe Marilyne, Riemondy Kent A, Potlapelly Sanjana, Strahl Brian D, Hansson Gunnar C, Dempsey Peter J, Brumbaugh Justin
Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA.
Nat Cell Biol. 2025 Feb;27(2):202-217. doi: 10.1038/s41556-024-01580-y. Epub 2025 Jan 8.
Plasticity is needed during development and homeostasis to generate diverse cell types from stem and progenitor cells. Following differentiation, plasticity must be restricted in specialized cells to maintain tissue integrity and function. For this reason, specialized cell identity is stable under homeostatic conditions; however, cells in some tissues regain plasticity during injury-induced regeneration. While precise gene expression controls these processes, the regulatory mechanisms that restrict or promote cell plasticity are poorly understood. Here we use the mouse small intestine as a model system to study cell plasticity. We find that H3K36 methylation reinforces expression of cell-type-associated genes to maintain specialized cell identity in intestinal epithelial cells. Depleting H3K36 methylation disrupts lineage commitment and activates regenerative gene expression. Correspondingly, we observe rapid and reversible remodelling of H3K36 methylation following injury-induced regeneration. These data suggest a fundamental role for H3K36 methylation in reinforcing specialized lineages and regulating cell plasticity and regeneration.
在发育和体内平衡过程中,可塑性对于从干细胞和祖细胞产生多种细胞类型是必需的。分化后,必须在特化细胞中限制可塑性,以维持组织的完整性和功能。因此,在稳态条件下,特化细胞的身份是稳定的;然而,一些组织中的细胞在损伤诱导的再生过程中会恢复可塑性。虽然精确的基因表达控制着这些过程,但限制或促进细胞可塑性的调控机制却知之甚少。在这里,我们使用小鼠小肠作为模型系统来研究细胞可塑性。我们发现H3K36甲基化增强了细胞类型相关基因的表达,以维持肠上皮细胞中的特化细胞身份。去除H3K36甲基化会破坏谱系定向并激活再生基因表达。相应地,我们观察到损伤诱导的再生后H3K36甲基化的快速且可逆的重塑。这些数据表明H3K36甲基化在强化特化谱系以及调节细胞可塑性和再生方面具有重要作用。