Suppr超能文献

基于局部线性重建的主动学习。

Active Learning Based on Locally Linear Reconstruction.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2011 Oct;33(10):2026-38. doi: 10.1109/TPAMI.2011.20. Epub 2011 Feb 4.

Abstract

We consider the active learning problem, which aims to select the most representative points. Out of many existing active learning techniques, optimum experimental design (OED) has received considerable attention recently. The typical OED criteria minimize the variance of the parameter estimates or predicted value. However, these methods see only global euclidean structure, while the local manifold structure is ignored. For example, I-optimal design selects those data points such that other data points can be best approximated by linear combinations of all the selected points. In this paper, we propose a novel active learning algorithm which takes into account the local structure of the data space. That is, each data point should be approximated by the linear combination of only its neighbors. Given the local reconstruction coefficients for every data point and the coordinates of the selected points, a transductive learning algorithm called Locally Linear Reconstruction (LLR) is proposed to reconstruct every other point. The most representative points are thus defined as those whose coordinates can be used to best reconstruct the whole data set. The sequential and convex optimization schemes are also introduced to solve the optimization problem. The experimental results have demonstrated the effectiveness of our proposed method.

摘要

我们考虑主动学习问题,旨在选择最具代表性的点。在众多现有的主动学习技术中,最优实验设计(OED)最近受到了相当多的关注。典型的 OED 标准最小化参数估计或预测值的方差。然而,这些方法只看到全局欧几里得结构,而忽略了局部流形结构。例如,I-最优设计选择那些数据点,使得其他数据点可以通过所有选定点的线性组合来最佳逼近。在本文中,我们提出了一种新的主动学习算法,该算法考虑了数据空间的局部结构。也就是说,每个数据点都应该通过仅其邻居的线性组合来近似。给定每个数据点的局部重建系数和选定点的坐标,提出了一种称为局部线性重建(LLR)的归纳学习算法来重建每个其他点。因此,最具代表性的点被定义为那些其坐标可用于最佳重建整个数据集的点。还介绍了顺序和凸优化方案来解决优化问题。实验结果证明了我们提出的方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验