Suppr超能文献

[基于模拟数据的FBP与ML-EM重建方法比较;SPECT图像投影数量的影响]

[Comparison of FBP and ML-EM reconstruction used by simulation data; effect of the projection number for the SPECT image].

作者信息

Fujihara Shuuji, Kageyama Shingo, Isoda Yasunori, Nagaki Akio, Matsutomo Norikazu, Takahata Akira, Komi Yoshihiro, Onishi Hideo

机构信息

Department of Radiology, Matsue Red Cross Hospital, Japan.

出版信息

Nihon Hoshasen Gijutsu Gakkai Zasshi. 2010 Dec 20;66(12):1587-97. doi: 10.6009/jjrt.66.1587.

Abstract

PURPOSE

The influence of the numbers of projection of SPECT exerting on a re-constructed image cannot be strictly evaluated by phantom studies. Therefore, we compared re-constructed images of the FBP method and the ML-EM method by using simulation data.

METHODS

Simulation data was entered in the image processing software, and the projection data that changed the numbers of projection was made. Afterwards, reconstructed images of the FBP and the ML-EM methods were compared with respect to contrast, %COV, and the NMSE value.

RESULT

When the numbers of projection of the FBP and the ML-EM method were decreased, all of the contrast, %COV, and the NMSE value were more deteriorated than that of the ideal image. Therefore, the image quality of SPECT improves with both FBP and ML-EM methods when there are many numbers of projection. Moreover, the FBP method was excellent in a cold contrast, and the ML-EM method was uniformly excellent. Therefore, an understanding of features and their inspection are effective for the selection of each image reconstruction method.

摘要

目的

通过体模研究无法严格评估单光子发射计算机断层扫描(SPECT)投影数量对重建图像的影响。因此,我们使用模拟数据比较了傅里叶反投影(FBP)方法和最大似然期望最大化(ML-EM)方法的重建图像。

方法

将模拟数据输入图像处理软件,生成改变投影数量的投影数据。然后,比较FBP和ML-EM方法重建图像的对比度、变异系数百分比(%COV)和归一化均方误差(NMSE)值。

结果

当FBP和ML-EM方法的投影数量减少时,对比度、%COV和NMSE值均比理想图像更差。因此,当投影数量较多时,FBP和ML-EM方法均可提高SPECT的图像质量。此外,FBP方法在冷对比度方面表现出色,而ML-EM方法整体表现优异。因此,了解各自的特点并进行检查有助于选择合适的图像重建方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验