Enemark John H, Astashkin A V, Raitsimring A M
Department of Chemistry, University of Arizona, Tucson.
Biol Magn Reson. 2010 Jan 1;29(2):121-168. doi: 10.1007/978-1-4419-1139-1_6.
Sulfite oxidases (SOs) are physiologically vital Mo-containing enzymes that occur in animals, plants, and bacteria and which catalyze the oxidation of sulfite to sulfate, the terminal reaction in the oxidative degradation of sulfur-containing compounds. X-ray structure determinations of SOs from several species show nearly identical coordination structures of the molybdenum active center, and a common catalytic mechanism has been proposed that involves the generation of a transient paramagnetic Mo(V) state through a series of coupled electron-proton transfer steps. This chapter describes the use of pulsed electron-nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopic techniques to obtain information about the structure of this Mo(V) species from the hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of nearby magnetic nuclei. Variable frequency instrumentation is essential to optimize the experimental conditions for measuring the couplings of different types of nuclei (e.g., (1)H, (2)H, (31)P, and (17)O). The theoretical background necessary for understanding the ESEEM and ENDOR spectra of the Mo(V) centers of SOs is outlined, and examples of the use of advanced pulsed EPR methods (RP-ESEEM, HYSCORE, integrated four-pulse ESEEM) for structure determination are presented. The analysis of variable-frequency pulsed EPR data from SOs is aided by parallel studies of model compounds that contain key functional groups or that are isotopically labeled and thus provide benchmark data for enzymes. Enormous progress has been made on the use of high-resolution variable-frequency pulsed EPR methods to investigate the structures and mechanisms of SOs during the past ~15 years, and the future is bright for the continued development and application of this technology to SOs, other molybdenum enzymes, and other problems in metallobiochemistry.
亚硫酸盐氧化酶(SOs)是动物、植物和细菌体内具有重要生理功能的含钼酶,可催化亚硫酸盐氧化为硫酸盐,这是含硫化合物氧化降解的终端反应。对几种物种的SOs进行的X射线结构测定表明,钼活性中心的配位结构几乎相同,并提出了一种共同的催化机制,该机制涉及通过一系列耦合的电子-质子转移步骤生成瞬态顺磁性钼(V)状态。本章介绍了如何使用脉冲电子-核双共振(ENDOR)和电子自旋回波包络调制(ESEEM)光谱技术,通过附近磁性核的超精细相互作用(hfi)和核四极相互作用(nqi)来获取有关该钼(V)物种结构的信息。可变频率仪器对于优化测量不同类型核(例如(1)H、(2)H、(31)P和(17)O)耦合的实验条件至关重要。概述了理解SOs的钼(V)中心的ESEEM和ENDOR光谱所需的理论背景,并给出了使用先进的脉冲EPR方法(RP-ESEEM、HYSCORE、四脉冲积分ESEEM)进行结构测定的示例。对SOs的可变频率脉冲EPR数据的分析借助于对含有关键官能团或经过同位素标记的模型化合物的平行研究,这些模型化合物可为酶提供基准数据。在过去约15年中,高分辨率可变频率脉冲EPR方法在研究SOs的结构和机制方面取得了巨大进展,这项技术在SOs、其他钼酶以及金属生物化学的其他问题上的持续发展和应用前景广阔。