Alliance Protein Laboratories, Thousand Oaks, CA 91360, USA.
Anal Biochem. 2011 May 15;412(2):189-202. doi: 10.1016/j.ab.2011.01.035. Epub 2011 Feb 1.
Brown and coworkers (Eur. Biophys. J. 38 (2009) 1079-1099) introduced partial boundary modeling (PBM) to simplify sedimentation velocity data analysis by excluding species outside the range of interest (e.g., aggregates, impurities) via restricting the sedimentation coefficient range being fitted. They strongly criticized the alternate approach of fitting g(s) distributions using similar range limits, arguing that (i) it produces "nonoptimal fits in the original data space" and (ii) the g(s) data transformations lead to gross underestimates of the parameter confidence intervals. It is shown here that neither of those criticisms is valid. These two approaches are not truly fitting the same data or in equivalent ways; thus, they should not actually give the same best-fit parameters. The confidence limits for g(s) fits derived using F statistics, bootstrap, or a new Monte Carlo algorithm are in good agreement and show no evidence for significant statistical distortion. Here 15 g(s) measurements on monoclonal antibody samples gave monomer mass estimates with experimental standard deviations of less than 1%, close to the confidence limit estimates. Tests on both real and simulated data help to clarify the strengths and drawbacks of both approaches. New algorithms for computing g(s) and a scan-differencing approach for PBM are introduced.
布朗及其同事(Eur. Biophys. J. 38 (2009) 1079-1099)引入了部分边界建模(PBM),通过限制拟合的沉降系数范围,排除感兴趣范围之外的物种(例如聚集体、杂质),从而简化沉降速度数据分析。他们强烈批评了使用类似范围限制拟合 g(s) 分布的替代方法,认为 (i) 它在“原始数据空间中产生非最优拟合”,以及 (ii) g(s) 数据转换导致参数置信区间的严重低估。这里表明,这两个批评都没有根据。这两种方法并没有真正拟合相同的数据或以等效的方式进行拟合;因此,它们实际上不应该给出相同的最佳拟合参数。使用 F 统计、引导或新的蒙特卡罗算法得出的 g(s) 拟合置信限非常吻合,没有证据表明存在显著的统计扭曲。这里对单克隆抗体样品进行了 15 次 g(s) 测量,给出的单体质量估计值的实验标准偏差小于 1%,接近置信限估计值。对真实数据和模拟数据的测试有助于澄清这两种方法的优缺点。介绍了用于计算 g(s) 的新算法和用于 PBM 的扫描差分方法。