Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland.
Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland.
Microbiol Spectr. 2022 Oct 26;10(5):e0165722. doi: 10.1128/spectrum.01657-22. Epub 2022 Sep 12.
This work reports detailed characteristics of the antimicrobial peptide Intestinalin (P30), which is derived from the LysC enzyme of Clostridium intestinale strain URNW. The peptide shows a broader antibacterial spectrum than the parental enzyme, showing potent antimicrobial activity against clinical strains of Gram-positive staphylococci and Gram-negative pathogens and causing between 3.04 ± 0.12 log kill for Pseudomonas aeruginosa PAO1 and 7.10 ± 0.05 log kill for multidrug-resistant Acinetobacter baumannii KPD 581 at a 5 μM concentration. Moreover, Intestinalin (P30) prevents biofilm formation and destroys 24-h and 72-h biofilms formed by Acinetobacter baumannii CRAB KPD 205 (reduction levels of 4.28 and 2.62 log CFU/mL, respectively). The activity of Intestinalin is combined with both no cytotoxicity and little hemolytic effect against mammalian cells. The nuclear magnetic resonance and molecular dynamics (MD) data show a high tendency of Intestinalin to interact with the bacterial phospholipid cell membrane. Although positively charged, Intestinalin resides in the membrane and aggregates into small oligomers. Negatively charged phospholipids stabilize peptide oligomers to form water- and ion-permeable pores, disrupting the integrity of bacterial cell membranes. Experimental data showed that Intestinalin interacts with negatively charged lipoteichoic acid (log based on isothermal titration calorimetry, 7.45 ± 0.44), causes membrane depolarization, and affects membrane integrity by forming large pores, all of which result in loss of bacterial viability. Antibiotic resistance is rising rapidly among pathogenic bacteria, becoming a global public health problem that threatens the effectiveness of therapies for many infectious diseases. In this respect, antimicrobial peptides appear to be an interesting alternative to combat bacterial pathogens. Here, we report the characteristics of an antimicrobial peptide (of 30 amino acids) derived from the clostridial LysC enzyme. The peptide showed killing activity against clinical strains of Gram-positive and Gram-negative pathogens. Experimental data and computational modeling showed that this peptide forms transmembrane pores, directly engaging the negatively charged phospholipids of the bacterial cell membrane. Consequently, dissipation of the electrochemical gradient across cell membranes affects many vital processes, such as ATP synthesis, motility, and transport of nutrients. This kind of dysfunction leads to the loss of bacterial viability. Our firm conviction is that the presented study will be a helpful resource in searching for novel antimicrobial peptides that could have the potential to replace conventional antibiotics.
这项工作报道了源于梭状芽孢杆菌 URNW 的 LysC 酶的抗菌肽 Intestinalin(P30)的详细特征。该肽显示出比亲本酶更广泛的抗菌谱,对临床革兰氏阳性葡萄球菌和革兰氏阴性病原体具有强大的抗菌活性,在 5μM 浓度下对铜绿假单胞菌 PAO1 的杀菌率为 3.04±0.12log,对多药耐药鲍曼不动杆菌 KPD 581 的杀菌率为 7.10±0.05log。此外,Intestinalin(P30)可防止生物膜形成,并破坏由鲍曼不动杆菌 CRAB KPD 205 形成的 24 小时和 72 小时生物膜(减少水平分别为 4.28 和 2.62logCFU/mL)。Intestinalin 的活性既没有细胞毒性,也没有对哺乳动物细胞产生溶血作用。核磁共振和分子动力学(MD)数据表明,Intestinalin 与细菌磷脂细胞膜相互作用的趋势很高。尽管带正电荷,但 Intestinalin 存在于膜中并聚集为小寡聚物。带负电荷的磷脂稳定肽寡聚物形成水和离子可渗透的孔,破坏细菌细胞膜的完整性。实验数据表明,Intestinalin 与带负电荷的脂磷壁酸(基于等温滴定量热法的对数,7.45±0.44)相互作用,导致膜去极化,并通过形成大孔影响膜完整性,所有这些都会导致细菌活力丧失。抗生素耐药性在致病菌中迅速上升,成为威胁许多传染病治疗效果的全球性公共卫生问题。在这方面,抗菌肽似乎是对抗细菌病原体的一种有趣选择。在这里,我们报告了一种源自梭状芽孢杆菌 LysC 酶的抗菌肽(由 30 个氨基酸组成)的特性。该肽对临床革兰氏阳性和革兰氏阴性病原体的菌株表现出杀菌活性。实验数据和计算模型表明,这种肽形成跨膜孔,直接与细菌细胞膜的带负电荷的磷脂结合。因此,跨细胞膜的电化学梯度耗散会影响许多重要过程,如 ATP 合成、运动和营养物质的运输。这种功能障碍会导致细菌活力丧失。我们坚信,本研究将成为寻找具有替代传统抗生素潜力的新型抗菌肽的有用资源。