University of Arkansas for Medical Sciences, Dept. of Pharmaceutical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
Am J Physiol Renal Physiol. 2011 Jul;301(1):F197-208. doi: 10.1152/ajprenal.00364.2010. Epub 2011 Feb 2.
PKC-ε activation mediates protection from ischemia-reperfusion injury in the myocardium. Mitochondria are a subcellular target of these protective mechanisms of PKC-ε. Previously, we have shown that PKC-ε activation is involved in mitochondrial dysfunction in oxidant-injured renal proximal tubular cells (RPTC; Nowak G, Bakajsova D, Clifton GL Am J Physiol Renal Physiol 286: F307-F316, 2004). The goal of this study was to examine the role of PKC-ε activation in mitochondrial dysfunction and to identify mitochondrial targets of PKC-ε in RPTC. The constitutively active and inactive mutants of PKC-ε were overexpressed in primary cultures of RPTC using the adenoviral technique. Increases in active PKC-ε levels were accompanied by PKC-ε translocation to mitochondria. Sustained PKC-ε activation resulted in decreases in state 3 respiration, electron transport rate, ATP production, ATP content, and activities of complexes I and IV and F(0)F(1)-ATPase. Furthermore, PKC-ε activation increased mitochondrial membrane potential and oxidant production and induced mitochondrial fragmentation and RPTC death. Accumulation of the dynamin-related protein in mitochondria preceded mitochondrial fragmentation. Antioxidants blocked PKC-ε-induced increases in the oxidant production but did not prevent mitochondrial fragmentation and cell death. The inactive PKC-ε mutant had no effect on mitochondrial functions, morphology, oxidant production, and RPTC viability. We conclude that active PKC-ε targets complexes I and IV and F(0)F(1)-ATPase in RPTC. PKC-ε activation mediates mitochondrial dysfunction, hyperpolarization, and fragmentation. It also induces oxidant generation and cell death, but oxidative stress is not the mechanism of RPTC death. These results show that in contrast to protective effects of PKC-ε activation in cardiomyocytes, sustained PKC-ε activation is detrimental to mitochondrial function and viability in RPTC.
PKC-ε 的激活介导了心肌缺血再灌注损伤的保护作用。线粒体是 PKC-ε 这些保护机制的亚细胞靶点。之前,我们已经表明 PKC-ε 的激活参与了氧化剂损伤的肾近端小管细胞 (RPTC) 的线粒体功能障碍(Nowak G、Bakajsova D、Clifton GL Am J Physiol Renal Physiol 286: F307-F316, 2004)。本研究的目的是研究 PKC-ε 激活在线粒体功能障碍中的作用,并确定 PKC-ε 在 RPTC 中的线粒体靶点。使用腺病毒技术在 RPTC 的原代培养物中过表达 PKC-ε 的组成型激活和失活突变体。活性 PKC-ε 水平的增加伴随着 PKC-ε 向线粒体的易位。持续的 PKC-ε 激活导致状态 3 呼吸、电子传递率、ATP 产生、ATP 含量以及复合物 I 和 IV 和 F(0)F(1)-ATP 酶的活性降低。此外,PKC-ε 的激活增加了线粒体膜电位和活性氧的产生,并诱导了线粒体片段化和 RPTC 死亡。动力相关蛋白在线粒体中的积累先于线粒体片段化。抗氧化剂阻断了 PKC-ε 诱导的活性氧产生的增加,但不能防止线粒体片段化和细胞死亡。失活的 PKC-ε 突变体对线粒体功能、形态、活性氧产生和 RPTC 活力没有影响。我们得出结论,活性 PKC-ε 是 RPTC 中复合物 I 和 IV 以及 F(0)F(1)-ATP 酶的靶点。PKC-ε 的激活介导了线粒体功能障碍、超极化和片段化。它还诱导了活性氧的产生和细胞死亡,但氧化应激不是 RPTC 死亡的机制。这些结果表明,与 PKC-ε 激活在心肌细胞中的保护作用相反,持续的 PKC-ε 激活对 RPTC 中的线粒体功能和活力有害。