Suppr超能文献

蛋白激酶 C-α 的激活促进了肾细胞在氧化剂损伤后线粒体功能和细胞存活的恢复。

Protein kinase C-α activation promotes recovery of mitochondrial function and cell survival following oxidant injury in renal cells.

机构信息

Univ. of Arkansas for Medical Sciences, Dept. of Pharmaceutical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.

出版信息

Am J Physiol Renal Physiol. 2012 Aug 15;303(4):F515-26. doi: 10.1152/ajprenal.00072.2012. Epub 2012 Jun 6.

Abstract

We demonstrated that nonselective PKC activation promotes mitochondrial function in renal proximal tubular cells (RPTC) following toxicant injury. However, the specific PKC isozyme mediating this effect is unknown. This study investigated the role of PKC-α in the recovery of mitochondrial functions in oxidant-injured RPTC. Wild-type PKC-α (wtPKC-α) and inactive PKC-α mutants were overexpressed in RPTC to selectively increase or block PKC-α activation. Oxidant (tert-butyl hydroperoxidel; TBHP) exposure activated PKC-α in RPTC but decreased PKC-α levels in mitochondria following treatment. Uncoupled and state 3 respirations and activities of complexes I and IV in TBHP-injured cells decreased to 55, 44, 49, and 65% of controls, respectively. F(0)F(1)-ATPase activity and ATP content in injured RPTC decreased to 59 and 60% of controls, respectively. Oxidant exposure increased reactive oxygen species (ROS) production by 210% and induced mitochondrial fragmentation and 52% RPTC lysis. Overexpressing wtPKC-α did not block TBHP-induced ROS production but improved respiration and complex I activity, restored complex IV and F(0)F(1)-ATPase activities, promoted recovery of ATP content, blocked mitochondrial fragmentation, and reduced RPTC lysis to 14%. In contrast, inhibiting PKC-α 1) induced mitochondrial hyperpolarization and fragmentation; 2) blocked increases in ROS production; 3) prevented recovery of respiratory complexes and F(0)F(1)-ATPase activities, respiration, and ATP content; and 4) exacerbated TBHP-induced RPTC lysis. We conclude that 1) activation of PKC-α prevents mitochondrial hyperpolarization and fragmentation, decreases cell death, and promotes recovery of mitochondrial respiration and ATP content following oxidant injury in RPTC; and 2) respiratory complexes I and IV and F(0)F(1)-ATPase are targets of active PKC-α.

摘要

我们证明,非选择性蛋白激酶 C(PKC)激活可促进肾近端小管细胞(RPTC)在毒物损伤后的线粒体功能。然而,介导这种效应的特定 PKC 同工酶尚不清楚。本研究探讨了 PKC-α 在氧化应激损伤的 RPTC 中线粒体功能恢复中的作用。野生型 PKC-α(wtPKC-α)和失活的 PKC-α 突变体在 RPTC 中过表达,以选择性地增加或阻断 PKC-α 激活。氧化应激(叔丁基过氧氢;TBHP)暴露激活了 RPTC 中的 PKC-α,但处理后线粒体中的 PKC-α 水平下降。TBHP 损伤细胞的解偶联和状态 3 呼吸以及复合物 I 和 IV 的活性分别下降至对照的 55%、44%、49%和 65%。损伤的 RPTC 中的 F(0)F(1)-ATP 酶活性和 ATP 含量分别下降至对照的 59%和 60%。氧化应激使活性氧(ROS)的产生增加了 210%,并诱导线粒体碎片化和 52%的 RPTC 裂解。过表达 wtPKC-α 并未阻断 TBHP 诱导的 ROS 产生,但改善了呼吸和复合物 I 活性,恢复了复合物 IV 和 F(0)F(1)-ATP 酶的活性,促进了 ATP 含量的恢复,阻断了线粒体碎片化,并将 RPTC 裂解减少至 14%。相比之下,抑制 PKC-α:1)诱导线粒体超极化和碎片化;2)阻断 ROS 产生的增加;3)阻止呼吸复合物和 F(0)F(1)-ATP 酶、呼吸和 ATP 含量的恢复;4)加剧 TBHP 诱导的 RPTC 裂解。我们得出结论:1)PKC-α 的激活可防止线粒体超极化和碎片化,减少细胞死亡,并促进 RPTC 中氧化应激损伤后线粒体呼吸和 ATP 含量的恢复;2)呼吸复合物 I 和 IV 以及 F(0)F(1)-ATP 酶是活性 PKC-α 的靶标。

相似文献

1
Protein kinase C-α activation promotes recovery of mitochondrial function and cell survival following oxidant injury in renal cells.
Am J Physiol Renal Physiol. 2012 Aug 15;303(4):F515-26. doi: 10.1152/ajprenal.00072.2012. Epub 2012 Jun 6.
2
Protein kinase C-α interaction with iHSP70 in mitochondria promotes recovery of mitochondrial function after injury in renal proximal tubular cells.
Am J Physiol Renal Physiol. 2013 Sep 1;305(5):F764-76. doi: 10.1152/ajprenal.00061.2013. Epub 2013 Jun 26.
3
Protein kinase C-α interaction with F0F1-ATPase promotes F0F1-ATPase activity and reduces energy deficits in injured renal cells.
J Biol Chem. 2015 Mar 13;290(11):7054-66. doi: 10.1074/jbc.M114.588244. Epub 2015 Jan 27.
4
Protein kinase C-epsilon activation induces mitochondrial dysfunction and fragmentation in renal proximal tubules.
Am J Physiol Renal Physiol. 2011 Jul;301(1):F197-208. doi: 10.1152/ajprenal.00364.2010. Epub 2011 Feb 2.
6
Protein kinase C-epsilon modulates mitochondrial function and active Na+ transport after oxidant injury in renal cells.
Am J Physiol Renal Physiol. 2004 Feb;286(2):F307-16. doi: 10.1152/ajprenal.00275.2003. Epub 2003 Oct 21.
7
Activation of ERK1/2 pathway mediates oxidant-induced decreases in mitochondrial function in renal cells.
Am J Physiol Renal Physiol. 2006 Oct;291(4):F840-55. doi: 10.1152/ajprenal.00219.2005. Epub 2006 May 16.
8
Akt activation improves oxidative phosphorylation in renal proximal tubular cells following nephrotoxicant injury.
Am J Physiol Renal Physiol. 2008 Feb;294(2):F423-32. doi: 10.1152/ajprenal.00463.2007. Epub 2007 Dec 12.
10
γ-Tocotrienol protects against mitochondrial dysfunction and renal cell death.
J Pharmacol Exp Ther. 2012 Feb;340(2):330-8. doi: 10.1124/jpet.111.186882. Epub 2011 Oct 31.

引用本文的文献

2
PPARα suppresses growth of hepatocellular carcinoma in a high-fat diet context by reducing neutrophil extracellular trap release.
JHEP Rep. 2024 Sep 30;7(1):101228. doi: 10.1016/j.jhepr.2024.101228. eCollection 2025 Jan.
4
Phosphoregulation on mitochondria: Integration of cell and organelle responses.
CNS Neurosci Ther. 2019 Jul;25(7):837-858. doi: 10.1111/cns.13141. Epub 2019 Apr 25.
6
Pyruvate antioxidant roles in human fibroblasts and embryonic stem cells.
Mol Cell Biochem. 2017 May;429(1-2):137-150. doi: 10.1007/s11010-017-2942-z. Epub 2017 Feb 28.
7
Protein kinase C-α interaction with F0F1-ATPase promotes F0F1-ATPase activity and reduces energy deficits in injured renal cells.
J Biol Chem. 2015 Mar 13;290(11):7054-66. doi: 10.1074/jbc.M114.588244. Epub 2015 Jan 27.
8
Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle.
Am J Physiol Lung Cell Mol Physiol. 2014 May 1;306(9):L840-54. doi: 10.1152/ajplung.00155.2013. Epub 2014 Mar 7.
9
Prohibitin attenuates oxidative stress and extracellular matrix accumulation in renal interstitial fibrosis disease.
PLoS One. 2013 Oct 25;8(10):e77187. doi: 10.1371/journal.pone.0077187. eCollection 2013.
10
Protein kinase C-α interaction with iHSP70 in mitochondria promotes recovery of mitochondrial function after injury in renal proximal tubular cells.
Am J Physiol Renal Physiol. 2013 Sep 1;305(5):F764-76. doi: 10.1152/ajprenal.00061.2013. Epub 2013 Jun 26.

本文引用的文献

1
γ-Tocotrienol protects against mitochondrial dysfunction and renal cell death.
J Pharmacol Exp Ther. 2012 Feb;340(2):330-8. doi: 10.1124/jpet.111.186882. Epub 2011 Oct 31.
2
Protein kinase C epsilon affects mitochondrial function through estrogen-related receptor alpha.
Cell Signal. 2011 Sep;23(9):1473-8. doi: 10.1016/j.cellsig.2011.04.010. Epub 2011 May 9.
3
Protein kinase C-epsilon activation induces mitochondrial dysfunction and fragmentation in renal proximal tubules.
Am J Physiol Renal Physiol. 2011 Jul;301(1):F197-208. doi: 10.1152/ajprenal.00364.2010. Epub 2011 Feb 2.
6
Removal or masking of phosphatidylinositol(4,5)bisphosphate from the outer mitochondrial membrane causes mitochondrial fragmentation.
Cell Signal. 2011 Feb;23(2):478-86. doi: 10.1016/j.cellsig.2010.10.025. Epub 2010 Oct 30.
7
Phosphorylation pattern of the NDUFS4 subunit of complex I of the mammalian respiratory chain.
Mitochondrion. 2010 Aug;10(5):464-71. doi: 10.1016/j.mito.2010.04.005. Epub 2010 Apr 28.
9
Akt activation improves oxidative phosphorylation in renal proximal tubular cells following nephrotoxicant injury.
Am J Physiol Renal Physiol. 2008 Feb;294(2):F423-32. doi: 10.1152/ajprenal.00463.2007. Epub 2007 Dec 12.
10
Sevoflurane-induced cardioprotection depends on PKC-alpha activation via production of reactive oxygen species.
Br J Anaesth. 2007 Nov;99(5):639-45. doi: 10.1093/bja/aem202. Epub 2007 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验